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Optics into Smaller-Scale Systems

Optics has made a long way from long-haul telecommunication
networks to data centers and multi-chip systems.
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The early days of ONoCs remind me of the early days of electrical
interconnection networks!



Behind the scene....

 Commercial exploitation of NoCs started from contradicting numbers

Netlist Floorplan Po;tr;)P;& X
AMBA Multilayer 480 400 16.7%
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NoC/21 bits 910 885 2.7%
NoC/38 bits 910 885 2.7%

Higher clock speed, higher predictability
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AMBA Multilayer 26.5
NoC/21 bits 100
NoC/38 bits 180
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Higher bandwidth, sometimes better latency!

>

" "

Overall Fabric +
Floorplan slack
AMBA Multilayer 35 5
NoC/21 bits 45 15
NoC/38 bits 45 15

Higher area though!

Sequential | Combination Overall Seq. ratio
AMBA Multilayer 6 66 72 18.5%
NoC/21 bits 296 81 377 |78.5%
NoC/38 bits 416 85 501 |83.0%

Higher power consumption though!

I Y Energy (mJ) B?Slfhtmz 3 Fabric only 1W system 5W system
o TN
AMBA Multilayer 1 ms 0.072 1.07 5.60
NoC/21 bits 0.9 ms 0.339 1.34 5.32
NoC/38 bits 0.85 ms 0.426 1.37 5.13




Behind the scene....

« Commercial exploitation of NoCs started from contradicting numbers

Not everything should be
“better” to bring a new
technology on the stage

The performance speedup property was key.
System energy savings were a byproduct.




The Boosting Factor

 |Initially, the NoC IP portfolio was the “business card” of NoC vendors

* Very soon it became clear that the real business card was the
availability of toolflows to bring designers’ productivity to a new level
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NoC vendors then started to deliver what designers actually needed:

» Fast and automated design space exploration

» Floorplanning constraints in the early design stages for faster and quicker convergence
» not just IP models, but also technology models

» NoC customization was the main goal

» IP portfolio: of course you should have it!!



The ONOC Business Card

TILE-Gx8016" Processor

' = The Electronic Tile-based CMP

o Architecture burns on average
15 Watts on target applicative
loads
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Interconnect Energy
(aggressive optical technology)
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Normalized System Energy
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4 bit
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ENoC ONoC (Conservative) ONoC (Aggressive)

ONoC makes the system more energy efficient, although the interconnect itself does not
achieve the energy break-even point with the electrical NoC

The trick: on average ONoC outperforms ENoC by about 18% @ 3bit and 23% @ 4bit.




Pathfinding

There is currently a huge gap between

Technology Developers & System Level Dagners
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Are we ready to bridge this gap?
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@ Descriptive information at different abstraction layers are mixed and
hardwired in the same design description.




Pathfinding

There is currently a huge gap between
Technology Developers & System Level Designers
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Pathfinding

There is currently a huge gap between
Technology Developers & System Level Designers
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Are we ready to bridge this gap?

\CrossbarReduced Crossbar/Hitless Router/WRON|-r outer| GWOR
MRRSs 16 12 8 12 12 8

Claim: “GWOR uses a lower number of MRRs than lambda-router (e.g., in a 4x4 ONoC)
Yes, since GWOR does not support self-communication!

@ Designs are difficult to compare with one another



Pathfinding

There is currently a huge gap between
Technology Developers & System Level Designers

I have a great

device; it works!
design with j

Are we ready to bridge this gap?
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€ The application of well-known interconnection network techniques is more difficult.



Desigh Methodology and Synthesis Flow

Only a cross-layer design methodology and automated synthesis toolflow can

accelerate or even determine the evolution of the ONoC concept into an
industry-relevant and viable interconnect technology

-Specification of abstraction layers for ONoC design.
Learning from the past:

» Fast and automated design space exploration

» Floorplanning constraints in the early design stages for faster and quicker convergence
» not just IP models, but also technology models

» NoC customization should be the main goal (high-end embedded computing)

» IP portfolio: of course you should have it!!



Early signs of a top-down
desigh methodology

« Let us keep the focus on Wavelength-Routed Optical Networks-on-Chip
- Contention-free and performance-guaranteed communication
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How to synthesize the topology?

Key abstract operator: add-drop filter
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Separation of chromatic signals:
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Wavelength Separation Graph

ASSUMPTIONS

* 4 INITIATORS AND 4 TARGETS (i.e., A,B,C D).
* INITIATORS USE THE SAME 4 WAVELENGTHS (i.e., 1,2,3,4).
* UTILIZATION OF 1X2 LOGICAL FILTERING OPERATORS

A Path #1
(1,2,3,4)A (1)A || TARGET#A Path #2
| (2,3,4)A k (2)A ||| TARGET#B Path #3| TARGET#C
N B (3,4)A r 3)a || Path #4
I
T (1,2,3,4)B r (1)B m
L\ (2,3,4)B k (3)B
T C (2,4)B rM)B
0| (1,2,3,4)C r (1)c (2)B
R
s 5 (2,3,4)C F (3)C
(1,2,3,4)D (1)D (2,4)C r (4)C
(2)C
(2,3,4)D F . (2D
(3,4)D (3)D
(4)D

Overall, 12 1x2 drop filters are needed
to realize 16 contention-free optical paths!!!



Covering the Separation Graph

Let us “cover” the wavelength graph with higher-order logic filters (e.g., 2x2)
in order to obtain logic topologies
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There are precise covering rules for the functional correctness of the topology
(e.g., never recombine split signals; never mix wavelength-homogeneous signals)

All known WRONoC topologies can be materialized this way!
What about unknown topologies?
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New Topology: Equalized Lambda-Router
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- more balanced optical paths
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New Topology: GWOR With Self-Communication
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New Topology: Random
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Wavelength Separation Graph

O First case assumptions: | | L] | 1 Second case assumptions:

* Floorplan area: 8mmx8mm ‘ ®* Floorplan area: 2.95mmx2.95mm

L L

=  Hub size: Immx1lmm =  Hub size: Immx1mm

/

+* The Proton P&R tool for ONoCs is used to obtain the Physical layout and the maximum insertion loss.

/

* Proton can be instructed to pursue different primary design goals (or a mix thereof):
v" Minimize_propagation_loss.
v" Minimize_crossing_loss.

16 25

14 13,66 Max_insertion_loss
12 11,22

19,63

10,311

B min_prop_loss B min_prop_loss

dB

B min_cross_loss B min_cross_loss

Balanced Lambda Gener. Random Balanced Lambda Gener. Random
Router GWOR Router GWOR

The random topology is the The lambda router is the
most power-efficient one most power-efficient topology

We start to have a design space to explore here! The common design abstraction is there!
The pruning method to some extent depends on th P&R algorithm!
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Augmenting the Flow
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Augmenting the Flow

Design iterations may be motivated by early-phase analysis
of metrics pertinent to the physical layout

Comm. reg uiremenh
DSE Logic
Topoloigies .
Pre-
\

Logic Topology
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There is no “clean” (inverse) correlation between
maximum insertion loss and worst OSNR in a topology

Automation of the flow will help designers
capture subtle effects




Augmenting the Flow

Design iterations may be motivated by early-phase analysis
of metrics pertinent to the physical layout

. There is no “clean” (inverse) correlation between
Comm. requirements . . . .
maximum insertion loss and worst OSNR in a topology

OSNRvs ILmax

The critical path with respect to
insertion loss is not P

the path with the worst OSNR /
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OSNR analysis should be performed on the layout as well,
which requires extensive CAD tool support
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Conclusions

Optical NoCs have been demonstrated to enable system-level
performance speedups and energy savings in academia.

However, it is the availability of design methodologies and synthesis
toolflows that makes the real difference when it comes to industrial
exploitation.

Clearly identifying abstraction layers in ONoC design is the ideal
stepping stone to kick-off this process. Nonetheless, cross-layer
optimizations are fundamental for predictable design.

Customization should again drive ONoC design, especially in the
embedded computing domain

In a sense, the history of electronic NoCs is repeating itself.
However, there will be a fundamental difference: the cross-layer
integration issue of optics with electronics.

It’s time to start bridging the EDA gap!



