

DESIGN, AUTOMATION & TEST IN EUROPE

9 - 13 March, 2015 · Grenoble · France

The European Event for Electronic System Design & Test

The Last Mile? Remaining Challenges in Optical Interconnect

Ian O'Connor

Ecole Centrale de Lyon – Lyon Institute of Nanotechnology

My life with optical interconnect

Analog Integrated Circuits and Signal Processing, 29, 37–47 2001
© 2001 Kluwer Academic Publishers, Manufactured in The Netherlands.

Behavioral Modeling and Simulation of Optical Integrated Devices

P. BONTOUX,1 I. O'CONNOR,1 F. GAFFIOT,1 X. LETARTRE1 AND G. JACQUEMOD2

¹LEOM-UMR 5512, Ecole Centrale de Lyon, 36, av. Guy de Collongue, 69130 Ecully, France ²LEAT-UMR CNRS 6071, 250 rue Albert Einstein, 06560 Valbonne, France E-mail: pascal.bontouv⊕ec-lyon.fr

"On-chip optical interconnect could become reality in five years" (I. O'Connor, 2001)

Design Automation and Test in Europe, Grenoble, France, 9-13 March 2015

Thermal Aware Design Method for

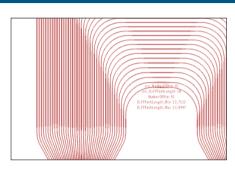
VCSEL-based On-Chip Optical Interconnect

Hui Li¹, Alain Fourmigue², Sébastien Le Beux^{1*}, Xavier Letartre¹, Ian O'Connor¹ and Gabriela Nicolescu²

Lyon Institute of Nanotechnology, INL-UMR5270

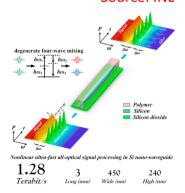
² Computer and Software Engineering Dept.

Ecole Centrale de Lyon, Ecully, F-69134, France

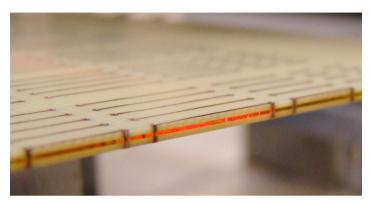

* Contact author: sebastien.le-beux@ec-lyon.fr

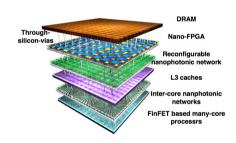

"On-chip optical interconnect could become reality one day" (I. O'Connor, 2015)

Challenges at the physical level

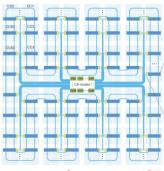

- Physical design tools
 - Curvilinear structures
 - Structure-functionality entanglement
- Source integration strategy
 - Off-chip source + on-chip modulators
 - On-chip sources + direct modulation
- Information coding strategy
 - Level-based coding
 - Pulse-based coding
- Silicon real estate

Source: Mentor Graphics


Source: INL


Source: Technical University of Denmark

Challenges at the system level


- Scale of integration
 - Optical I/O
 - 3D interposers
 - On-chip interconnect
- Simulation and design tools
 - Vector-based optical signals
 - Heterogeneous system
- Network topology
 - One size fits all (ring? mesh?)
 - Adapting to requirements
 - Intelligence in the routing
- Killer application + ecosystem

Source: Fraunhofer

Source: University of Colorado at Boulder

Source: HKUST

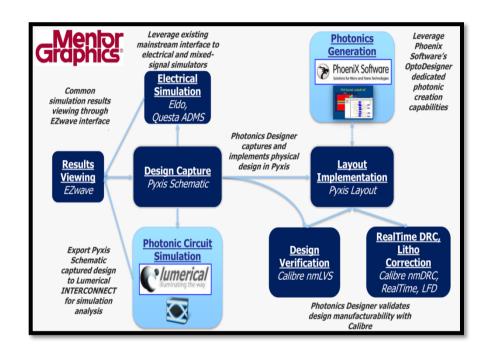
Challenges due to thermal variations

- Heavy focus on wavelength-routing architectures
 - Wavelength-resonance and source efficiency depend on temperature
 - Thermal variations can lead to severe loss of functionality
 - Compensation techniques
 - Overhead: power and silicon real estate
- Alternative?
 - Spatial multiplexing
 - Multiple parallel waveguides to bundle signals in point-to-point links with no wavelength routing
 - Clear area penalties

Thermal tuning

Panel

 In your view, what is the most significant challenge to overcome before widespread adoption of optical/photonic interconnects for computing systems, and why?

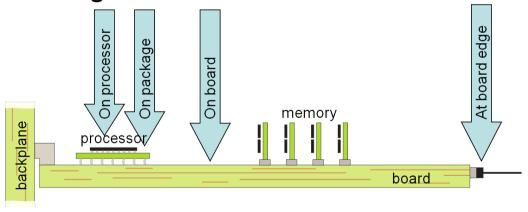

• Panelists:

- John Ferguson, Mentor Graphics Corp, US
- Antonio La Porta, IBM, Zurich Research Laboratory, CH
- Davide Bertozzi, University of Ferrara, IT
- Jiang Xu, Hong Kong University of Science and Technology, CN
- Olivier Sentieys, INRIA University of Rennes 1, FR
- Gabriela Nicolescu, Ecole Polytechnique de Montreal,
 CA

John Ferguson

Dedicated Photonics Custom Design Platform

- Mentor Graphics
 - Pyxis Custom: schematic, layout, simulation
 - Calibre: industry standard PV and DFM
- Lumerical Solutions OpenDoor partner
 - INTERCONNECT: time and frequency domain photonic circuit simulation
- PhoeniX Software
 — OpenDoor partner
 - OptoDesigner: layout generation of advanced photonics structures



- Design tools alone are not enough
 - Qualified PDK's are required

Antonio La Porta

23-mars-15

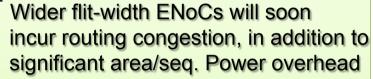
- Higher level of photonic functionality integration
 - What it really means for computer systems:
 - System- or chip-level? Co-package of what with what? Hybrid or monolithic integration?
 - How and where to bring the optics?
 - For each scenario, what do we really gain?

IBM's "Sequoia" BlueGene/Q @ LLNL

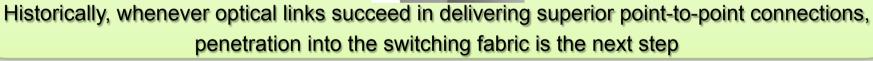
Better performance, more disruptive, more development required

Davide Bertozzi

Companies will do their best to resist the change...


Hey, it's an expensive technology!

However there are early signs that they will be stuck in the middle of a labyrinth...


- Need to move more data through pin-limited chip interfaces
- Need to move more and more data through IP core interfaces on the chip

We are very good at further optimizing electronics!

...with no easy way out (i.e., outof-reach for electronics)

At 4/5 hops (2mm each) in the ENoC, ONoCs already achieves the energy breakeven point at 0.6pJ/bit in 40nm

Once there, we should be ready to deliver companies what they actually need:

- ✓ Design methodologies and synthesis toolflows with cross-layer optimizations: it's time!
- ✓ EDA can lead to concrete evaluations of new technologies
- ✓ Gating methods for optical components to alleviate the static power concern
- ✓ Rethink the system architecture: e.g., no NUMA effects, how to partition and reconfigure,...

However the good news is that today industry is on the watch for this new technology

Jiang Xu

A Different "Building Material"

Solkan Bridge Slovenia 1906

- High bandwidth
- Low propagation delay
- Low propagation loss
- Low sensitivity to environmental EMI

SteelCold Spring Bridge
USA 1963

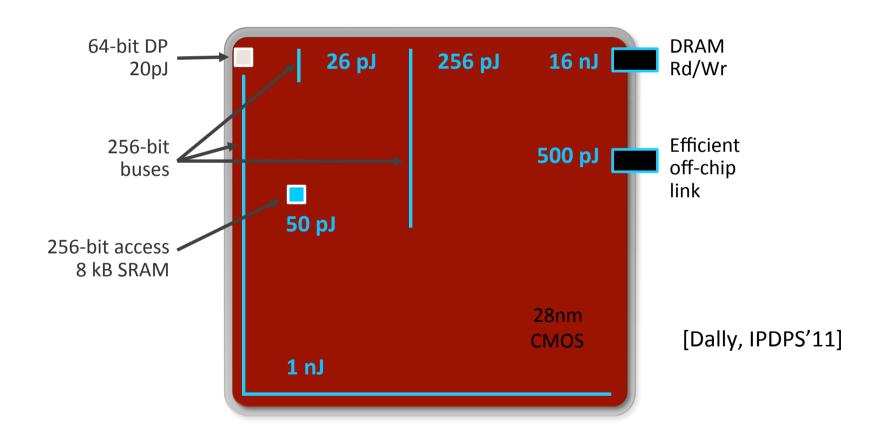
Steel
Tsing Ma Bridge
Hong Kong 1997

- Cons
 - Crosstalk noise
 - Thermal sensitivity
 - Process variation
 - Electrical/optical conversion overheads
 - Optical signals are difficult to "buffer"

Differences bring both challenges and opportunities

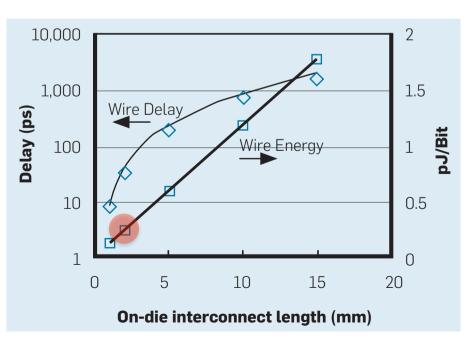
Olivier Sentieys

Computer architect's point of view


- Are we really bandwidth-limited for on-chip communications?
 - Not really true in current computer architectures
 - But big data will maybe change the game
- What are the big challenges?
 - Amdhal's law

$$S(N) = \frac{1}{(1 - P) + \frac{P}{N}}$$

- Even with 95% of parallel code, speedup S < 20
- Power!
 - Energy efficiency is not scaling along with integration capacity
 - Data movement costs more than computing
- So maybe energy efficiency is the real challenge


The Energy Cost of Data Movement

Fetching operands costs more than computing

The Energy Cost of Data Movement

- Future processor up to 3 Tera-op/sec
- At minimum requires 64b x 9 Tera-operands to be moved each second
- If on average 1mm (10% of die size) then
 - 0.1pJ/bit x 576 Tbits/s
 - consumes 58 Watts!

Gabriela Nicolescu

Challenge for Optical Interconnect Adoption

Outstanding solutions & tools

Cross-cutting challenge: multi-scale, multi-technology and multi-domain models

