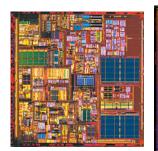
Meet in the Middle: Leveraging Optical Interconnection Opportunities in Chip Multi Processors

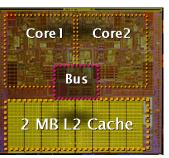
Sandro Bartolini*

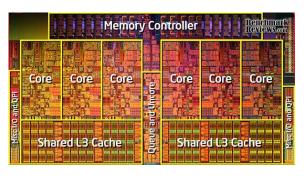
Department of Information Engineering, University of Siena, Italy

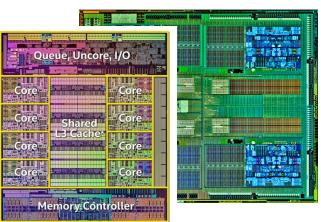
bartolini@dii.unisi.it

OPTICS Workshop, Grenoble, 13/3/2015

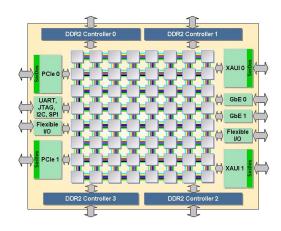

- Introduction
- Ring-based optical interconnection tradeoffs
- Fast path-setup for switched optical networks
- Software restructuring for matching ONoC features
- Conclusions

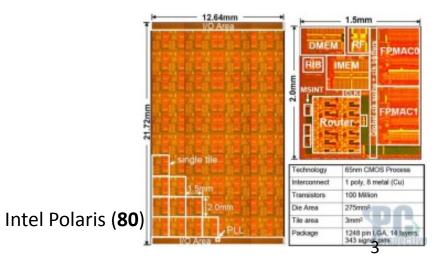





Introduction and motivation – processors (1)

- Nowadays processors are parallel
 - Biggest reason was the emerging of <u>wire-delay issues</u> ... i.e. on-chip latency

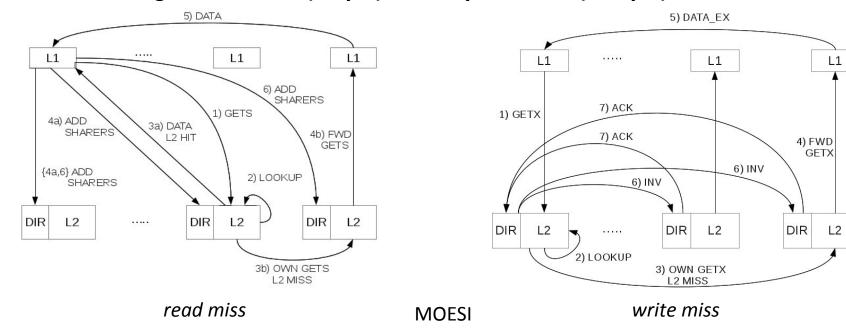

Pentium 4 (1)


CoreDuo (2)

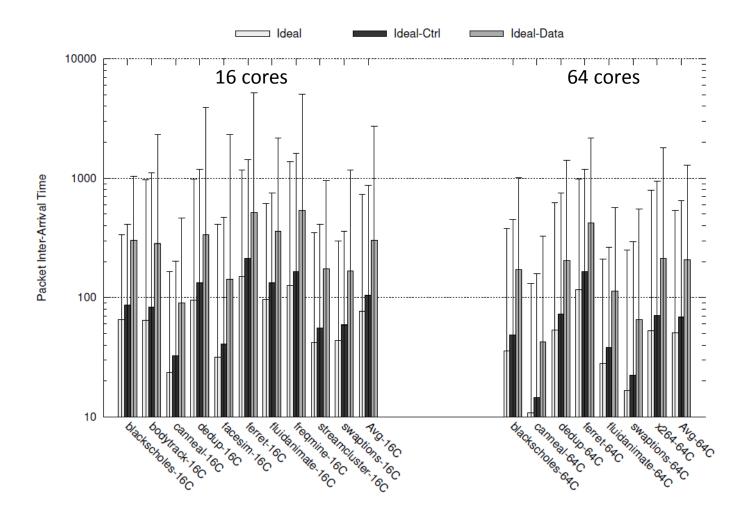
i7-980X (**6**)

i7-5960X / AMD FX8370 (8)

Beyond about 10 → tiled design



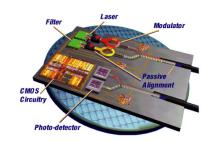
Tilera Tile64 (64)


Introduction and motivation – processors (2)

- "... when processor A wants to talk to processor B ..."
- Shared memory model is here to stay ... some more
 - At least within core clusters
 - Ease of programmability
 - Scalable directory-based coherence
 - Numerous message exchanged for each load/store
 - E.g. 80 % control (8 byte) and only 20% data (64 byte)

4

Introduction and motivation – coherence traffic



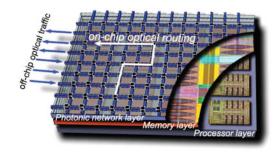
Total and control- (Ctrl) or data- (Data) only stats for ideal network

Low average load, bursty → message latency is critical

Introduction and motivation – Integrated photonics (1)

Optical communication technology can now be integrated in CMOS process

Pros:


- Fast propagation (16 ps/mm)
 - 10x less latency compared to electronics (e.g. 22nm [1])
 - E.g. Couple of cycles @3 GHz to cross a 2cm chip corner to corner
- Compatible with CMOS fabrication
- High-bandwidth: 10-40 GHz frequency and WDM (order of 1 Tbps)
- End-to-end: energy consumption almost insensitive to distance

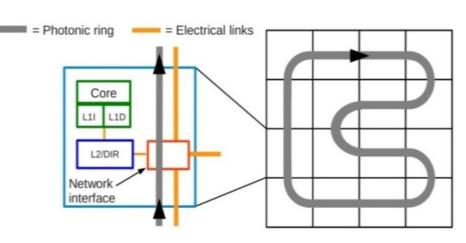
• Cons:

- End-to-end ... no store-and-forward → Throw away a lot of knowhow
- Active components (lasers, photodetectors) have some integration problems
 - Can have or induce significant static power consumption

Introduction and motivation – Integrated photonics (2)

- Integrated photonics is still in its infancy in serving computer systems <u>local</u> requirements
 - Traffic close to cores is very different from the aggregated traffic at wider scale (e.g. blade/rack/datacenter)
- Layered design is not yet consolidated enough
 - Application-, architecture-, network-level requirements and choices are not orthogonal to optical design choices
 - Like: topology, access schemes, resource provisioning, DWDM, technological choices
 - Interactions can induce very different performance/consumption in the optical network
- Need for an integrated multi-layer approach
 - Effective designs
 - Exploration and consolidation of best practices

- Introduction
- Ring-based optical interconnection tradeoffs
- Fast path-setup for switched optical networks
- Software restructuring for matching ONoC features
- Conclusions

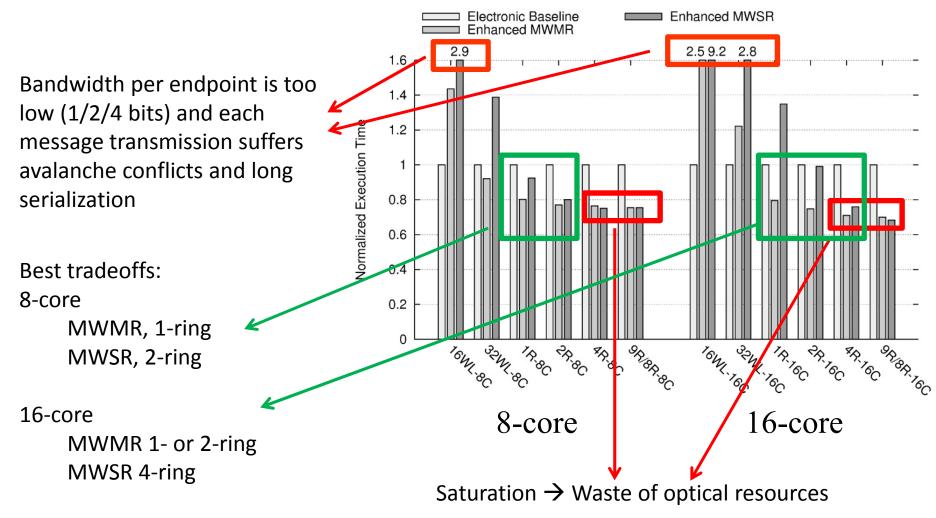


Ring-based ONoC tradeoffs

- Hybrid Electronic-Optical on-chip networks or <u>all-optical</u>
 - Optical network based on ring logical topology
 - Simplicity of ring topology can be a good reference design point
- We analyze the relationships between optical resource provisioning (waveguides) and core number, versus:
 - Traffic quote offloaded to the optical network
 - (One ring) Only read-requests, invalidations and invalidation acks
 - (Multiple rings) All traffic
 - MWSR, MWMR access schemes

Considering performance and power metrics

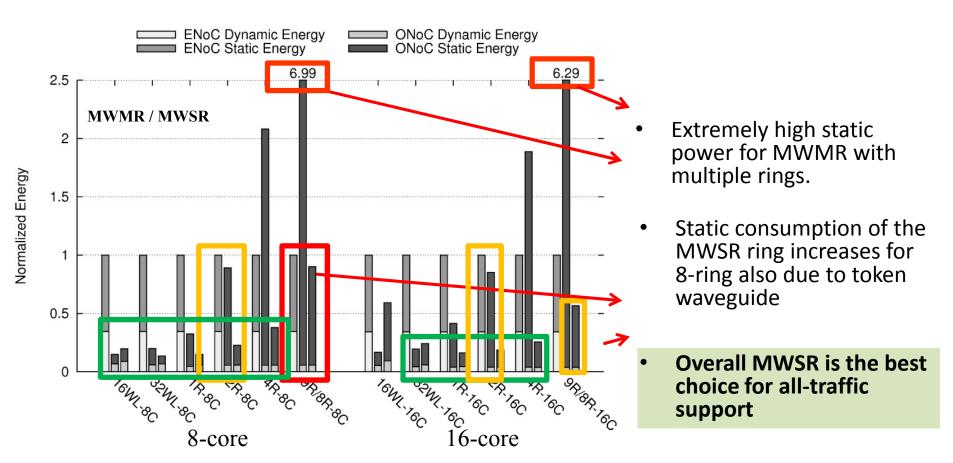
Simulation Environment and Methodology


- Gem5 simulator in Full-System mode (Linux 2.6.27 booted in gem5), 8/16/32/64 core running Parsec 2.1 multi-threaded benchmark suite
 - Multi-threaded applications → We forced <u>core affinity</u> on the application execution to avoid non determinism due to OS scheduling

Architectural parameters

Cores	8/16/32 cores (64 bit), 4 GHz	
L1 caches	16 kB (I) + 16 kB (D), 2-way, 1 cycle hit time	
L2 cache	16 MB, 8-way, shared and distributed 8/16/32 banks, 3/12 cycles tag/tag+data	
Directory	MOESI protocol, 8/16/32 slices, 3 cycles	
ENoC	2D-Mesh/Torus, 4 GHz, 4/5 cycles/hop, 32 nm, 1 V, 64/128 bit/flit	
Optical Ring	3D-stacked, 1-9 parallel waveguides, 30 mm length, 8/16/32 I/O ports, 10 GHz, 64/70 (16 and 32) wavelengths, 460 ps full round	
Main memory	4 GB, 300 cycles	

Results: multiple rings and all traffic

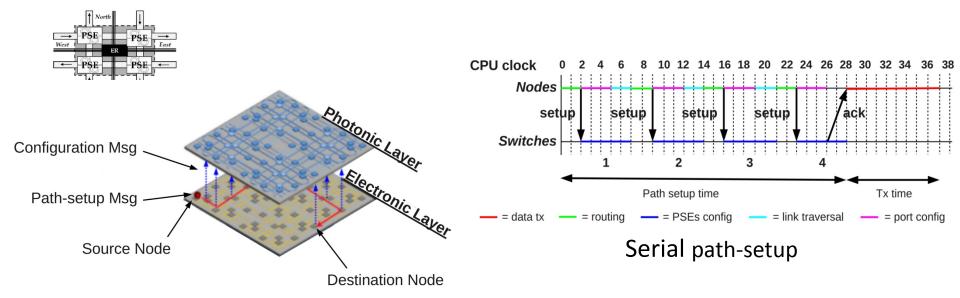

- No electrical NoC : searching for good design points
 - From low bandwidth up to 8/9 64-wavelength rings

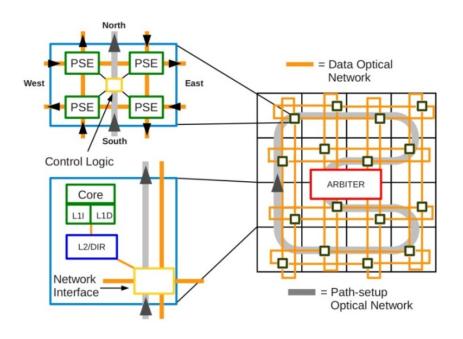
[Grani, Bartolini, "Design Options for Optical Ring Interconnect in Future Client Devices", ACM JETC, 2014]

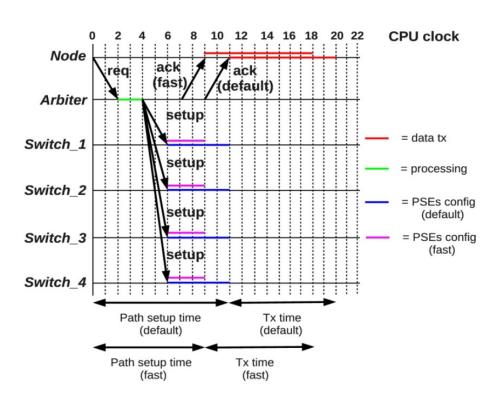
Results: energy

- Sensitivity to the number of photonics rings for MWMR and MWSR
 - Ring number increase → Overall NoC optical power increase, MRR increase, IL increase (crossing, splitting, ...), increased laser power
 - But some topology assumptions can make the difference ...

[Grani, Bartolini, "Design Options for Optical Ring Interconnect in Future Client Devices", ACM JETC, 2014]

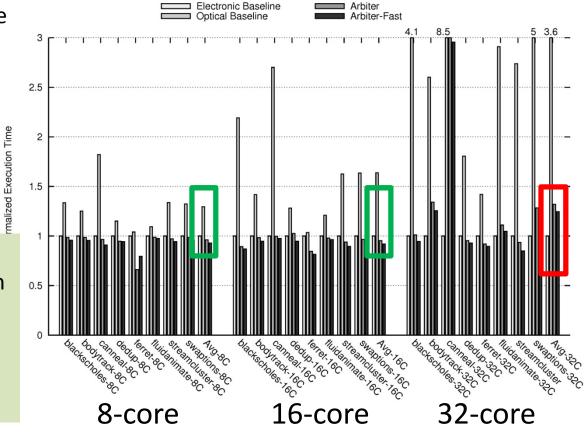

- Introduction
- Ring-based optical interconnection tradeoffs
- Fast path-setup for switched optical networks
- Software restructuring for matching ONoC features
- Conclusions


Fast path-setup for switched optical networks

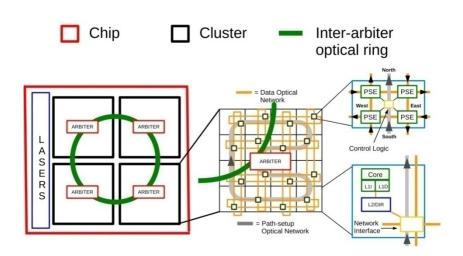

- Switched optical networks can provide
 - Potentially higher scalability than ring (crossbar)-based approaches
 - Require broadband optical switches
 - But suffer from sequential path-setup time
 - <u>High overhead</u> for high <u>endpoint number</u> and for "small" message sizes
 - "small" can mean less than 1000s bytes!
 - Coherence traffic is out of game

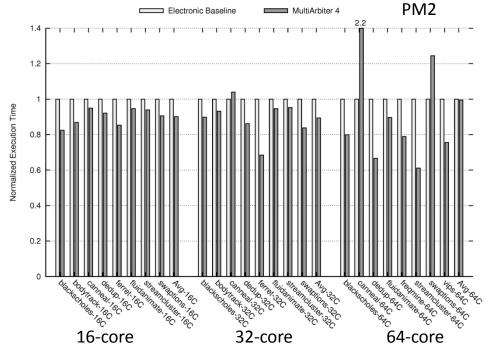
Fast path-setup for switched optical networks

- We propose a centralized arbiter that can <u>simultaneously configure the</u> <u>required optical switches</u> through a wavelength-routed optical-ring
 - Network from cores to arbiter is optical ring-based (wavelength-routed)
 - Decoupling topologies of path-setup network and data network

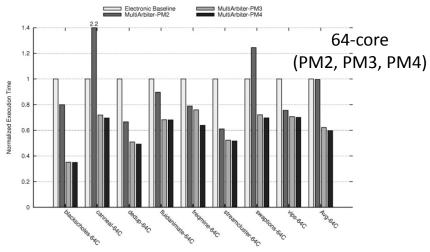


Results single arbiter


Setup	Serial PS [cycles]	Simultaneous PS [cycles]
8-core-AVG	51.26	25.94
16-core-AVG	70.37	27.45
32-core-AVG	156.18	65.60

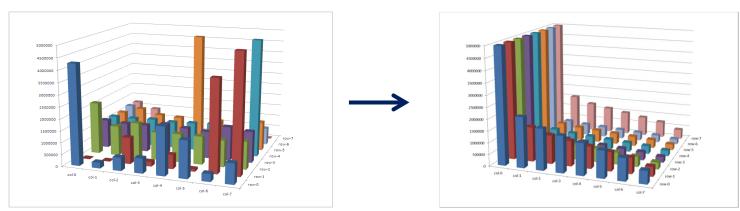

Path-setup latency: dramatic average reduction even if conceptually the arbiter serializes pathsetup requests

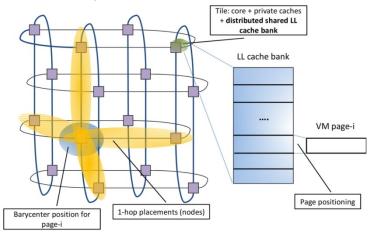
- Arbiter works well 8-and 16-core setups
- For 32-core case arbiter induce 25% slowdown due to path-setup serialization
- In all cases arbiter performs much better than the serial path setup
 - Serial PS prevents cache coherent traffic to work
 - Arbiter support this traffic


Scalable fast-setup: multiple arbiter

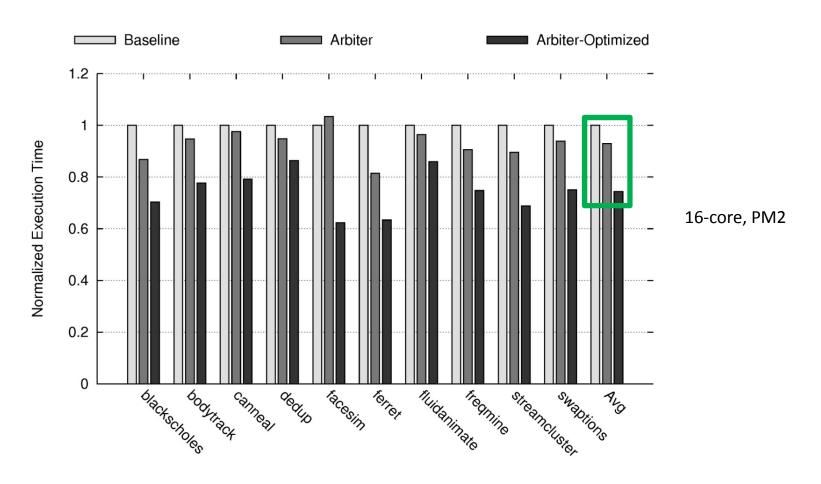
Multi-Arbiter 4-Clusters

- One arbiter per cluster, optical ring between clusters
- Independent path-setups within clusters
- <u>Coordinated inter-cluster path-setup</u>
- <u>2-level MOESI to increase in-cluster</u> paths


- Introduction
- Ring-based optical interconnection tradeoffs
- Fast path-setup for switched optical networks
- Software restructuring for matching ONoC features
- Conclusions


Software restructuring for matching ONoC features

- On-chip optical networks can potentially improve wire-delay issues in tiled CMPs
 - Distant cores (i.e. many "hops" away) can be actually reached in a few cycles
- Access time to distributed cache resources is <u>more-uniform</u>
 - Not Uniform Cache Access (NUCA) architectures (e.g. in tiled CMPs)
- Software restructuring techniques for locality typically aim at putting data close to usage (cores) as to reduce access time in NUCA caches
 - Delicate balance between ideal access barycenter from source cores and conflicts (misses) penalties in zones that need to be congested for low NoC access overhead


Software restructuring for matching ONoC features (2)

- With ONoCs on average we can afford to use far more cache
 - Spread data much more in the chip to reduce conflicts (misses) as <u>distance</u>
 overhead is almost constant
 - Hyp: using our arbitrated optical switched network
- Not exactly straightforward though:
 - Actually with switched networks, conflicts arise not only for data placement
 but for <u>message paths</u> ... and, specifically, <u>sub-paths</u>!
 - Need to
 - Spread data to gain from reduced conflict misses
 - But (!) not too far from barycenter otherwise average path-length increases and path-setup conflict probability increases (big overhead !)
 - Each VM page is positioned in the access barycenter first
 - Then it is tried around a "radius" of H hops, looking for the minimum of a cost-access function
 - Considering: misses, path-length and conflicts, cache, memory and ONoC access times

[[] Grani, Bartolini, Frediani, Ramini, Bertozzi, "Integrated Cross-Layer Solutions for Enabling Silicon Photonics into Future Chip Multiprocessors", IEEE IMS3TW, 2014]

Results: Software restructuring for switched ONoC

- Software restructuring allows gaining 19% more speedup over the standard arbiter solution (7% over the Baseline)
 - Electronic baseline cannot benefit from this software restructuring due to heavy Non-uniform access time to tiles

- Introduction
- Ring-based optical interconnection tradeoffs
- Fast path-setup for switched optical networks
- Software restructuring for matching ONoC features
- Conclusions

Conclusions

- Integrated optics is a breakthrough technology that brings a number of positive facets
 - Improvements in devices will make it even better perspective
- Its technological discontinuity needs to be integrated with patience and with a thick vertical design approach in modern processor and computer design
 - To master and exploit the various <u>two-way inter-related effects</u> that are nowadays present between layers
 - significant risk of sub-optimal designs ... if not even worse than some well-tuned electronic solutions
 - For reaching effective designs
 - Opportunities and constraints of different layers must ... meet in the middle ©

Meet in the Middle: Leveraging Optical Interconnection Opportunities in Chip Multi Processors

Thanks for your attention!

Q&A

