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Silicon Photonics — Benefits & Challenges

e Silicon Photonic Links vs. Electrical Links

o More sensitive to

o Higher bandwidth thermal variations High thermal
density

o More sensitive to
@=» o Lower long-distance process variations ./
= communication latency :

o High laser source

o Lower data-dependent power consumption
energy consumption

tuning power

o Hard to package off-
chip laser sources
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Silicon Photonics — Benefits & Challenges

 Thermal and Process Sensitivity of Photonic Devices

Thermo-optic
effect

Thermal variations =sssss) Shift in optical frequency _
Optical Frequency

Process variations =) Ring dimensions Mismatch

* Impacts of Optical Frequency Mismatch
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Modulator
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Previous Work

Using hardware for ring filters/modulators thermal control

— Cladding [Djordjevic, Optical Exp.” 2013]
— Heaters [Zhou, TACO’2010; Li, TVLSI’2012]

— Mach-Zehnder interferometers [Biswajeet,
Optical Exp.”2010]

e Runtime management in manycore systems w/ PNoC
— Aurora [Li, TCAD’2015]: Thermal Tuning + DVFS + Routing Algorithm

Place & route for PNoCs

— PROTON: An automatic tool for PNoC
P & R [Boos, 2013]

— GLOW: A ILP based global router for
PNoC [Ding, 2012]
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Target Manycore System w/ PNoC

e 256-core system with Clos network
8-ary 3-stage Clos
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[DATE’16]

Floorplan Optimization Flow

MILP-Based OUTPUT

Design Options & Optimizer
Constraints Floorplan with Minimized

(# of cores, aspect Compact PNoC Power & Area Cost
ratios, etc.) Thermal Model

* Optimization Goal:
Minimize: o - Ppyoc + [.)) -AREApN.C

PPNoC — Plaser + Ptuning + Pelectrical
— PNoC Power:

P & R’simpact on waveguide length, crossing and bending
* Laser source efficiency
* PNoC placement’s impact on thermal tuning power

— PNoC Area:
e Area cost of router groups and waveguides
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Floorplan Optimization Flow

MILP-Based OUTPUT

Design Options & Optimizer
Constraints Floorplan with Minimized

(# of cores, aspect Compact PNoC Power & Area Cost
ratios, etc.) Thermal Model

 Compact thermal model

Accumulated thermal

Power profile: weight profiles
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Cross-layer PNoC P&R Optimization

Power Profiles .
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. [DATE’14]
Runtime Management on
Many-Core Systems with PNoC

e 256-core system with Clos network

Core Architecture: 1A-32 core in Intel SCC [Howard,ISSCC2011],
16KB I/D L1 cache & 256KB L2 cache;
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RingAware Workload Allocation Policy

e Goals:

— Minimize the difference
among ring temperatures

— Reduce the overall chip
temperature

e Active cores’ impact on

ring temperature

— Classify the cores based
on their distances to a
ring group

@ Rings
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RingAware Workload Allocation Policy

* Ring temperature gradient minimization — RingAware

— Take ring locations into consideration

Categorize cores based on their
relative positions to the rings

# of threads <= the # of non-
RDO and non-center cores?

Keep same # of

Avoid RDO and threads in each

center cores

RDO region

Center core . RDO cores

* Multi-program support

— Sort the threads based on their power dissipation & allocate high-
power application first
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[Under Review]

FreqAlign Workload Allocation Policy

* Process variation introduces resonant frequency shift

after the system is manufactured FreqAlign
* Only balancing the temperature of ring groups is not o
: Adaptive
enough to compensate the frequency mismatch
Frequency
* On-chip laser sources’ optical frequencies also need to Tuning

match with corresponding rings’ resonant frequency
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FreqAlign Workload Allocation Policy

Target many-core system: * Two new concepts:
| RG7 | _GL
n of o Weight matrix: Every core’s thermal impact on
A e every ring group (extracted from HotSpot);

-]

WRG wRGA o Weight array: The current frequency shift for
all ring groups. Process variation is accounted

mRG mRG when initializing this weight matrix.

| |

FreqAlign Allocation Policy:

Initial RG
weight array

Find a core that minimizes

the weight array diff. and

More

threads?
assign the thread

Update the RG
weight array




Experimental Methodology

* Simulation Framework:

Power Traces
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e Workload Sets: Selected benchmarks
from SPLASH2, PARSEC and UHPC:
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 Tested Policies:

— Workload Allocation Policy:
Cluster, RingAware, FregAlign

— Thermal Tuning Policy: Target
Frequency Tuning (TFT),
Adaptive Frequency Tuning

(AFT)
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Experimental Results for
Many-core System w/o Process Variations

Resonance Frequency Difference PNoC Thermal Tuning Power

w
o

120}

N
ul

100} 1 HEE 32+32
B 64+64
[ 32496
1 96+32

1 96+96

N
o
T

80}

60}

[
o
T

a0}

20}

Thermal Tuning Power (W)
[
ul Ul

Resonance Frequency Difference
Among Ring Groups (GHz)

il ..

0

xel 3 & \\%(\
OV Gyneh Q(eo‘ ) o Ké o Pé o N}
c;\.e’ &’b( @’é‘( P&\%
o Q‘\\(\%P‘ Q\\Q%P‘ ?(e

Compared to RingAware, FreqAlign reduces the resonant frequency
difference by 60.6% on average;

Compared to RingAware + TFT, FreqgAlign + AFT reduces the tuning power by
14.93W on average.
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Experimental Results for
Many-core System w/ Process Variations

Resonance Frequency Difference
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Average resonant frequency reduction: 52.7%

Average tuning power reduction: 65.8%
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[NOCS’14]
Laser Source Placement and Sharing

* Laser Source Power Consumption (P\)

PIN_ ZPIN_ Z ZOUT

i=1 WWPE(TLS,P UT) m: # of laser sources

— Wall plug efficiency (7ypg)
— Operating temperature of laser sources (T )

— Required output optical power from laser sources (Pgy7)

Waveguide Propagation loss

P,yr < Optical loss Rings Cross/bend loss

Photodetector

 Laser Source Power Reduction

— Reduce propagation loss (thus, Po 1) by placing laser sources locally to rings

— Reduce # of laser sources and increase 1, by sharing laser sources among

waveguides
17



[NOCS’14]
Laser Source Placement and Sharing Examples

Laser Layer: = em e mm— e - - -

= | a
2.Local | & ®©
- | a
= | a

I{ Laser Source Placements ‘I
: J L :
- 1. Edge
Photonic Layer: : g :
l |
I |
l |
Logtc Layer: : I
|
l |
I |
/

Edge Local Higher Sharing Degree
Placement | Placement —> Higher 1,5, Lower # of laser sources
Sharing —> Lower laser source power consumption

High Low
Degree Higher Propagation loss
Propagation _ —> Higher required output optical power

loss il I —> Higher laser source power consumption
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[NOCS’14]
Laser Source Placement and Sharing
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* For laser source power reduction, we need to jointly consider:
— Network topology/layout;
— Waveguide design;
— Laser source sharing and placement.
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Summary

O

Cross-layer, thermally-aware
optimizer for floorplanning of
PNoCs

Runtime workload allocation for
thermal tuning power reduction

Laser source placement for
power/performance optimization

Cross-layer simulation flow: an
enabler to optimization of
systems with PNoCs
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