

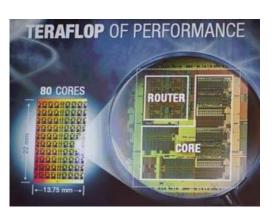
DESIGN, AUTOMATION & TEST IN EUROPE

14 - 18 March, 2016 · ICC · Dresden · Germany The European Event for Electronic System Design & Test

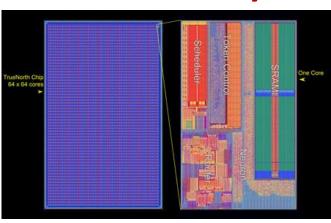
Fabrication Non-Uniformity in Silicon Photonic Interconnects

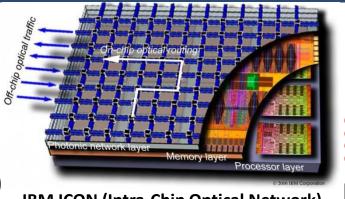
Mahdi Nikdast¹, Gabriela Nicolescu¹, Jelena Trajkovic², and Odile Liboiron-Ladouceur³

¹Polytechnique Montréal, Montréal, Canada ²Concordia University, Montréal, Canada ³McGill University, Montréal, Canada



Silicon Photonic Interconnects

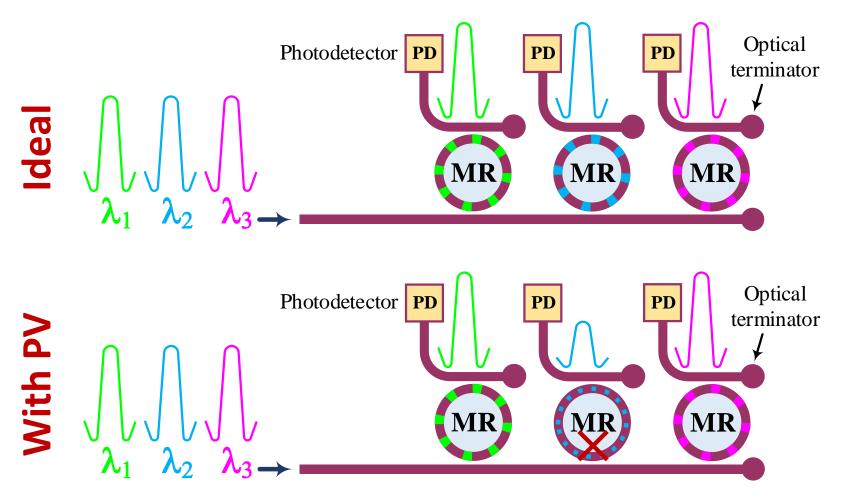

- **Number of processor cores**
- **Metallic interconnects limitations**
- Let there be light
- Wavelength Division Multiplexing (WDM)
- Challenges


Fabrication non-uniformity

Intel's Polaris chip: 8x10 mesh (2007)

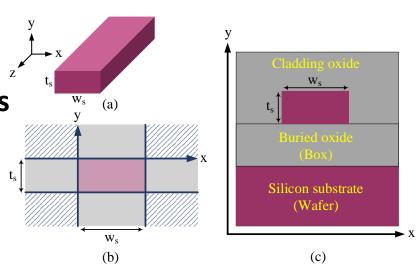
IBM's TrueNorth: 4096 cores (2011^2014)

IBM ICON (Intra-Chip Optical Network) **3D-integated chip consists of several layers** (2006)


IBM's fully integrated wavelength multiplexed CMOS silicon photonics chip (2015)

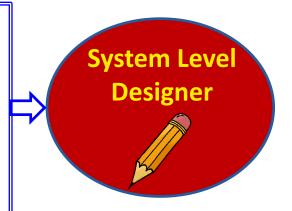
- Fabrication non-uniformity in silicon photonics
- Proposed bottom-up approach
- Quantitative simulation results
- Fabrication
- Conclusion

- Fabrication non-uniformity in silicon photonics
- Proposed bottom-up approach
- Quantitative simulation results
- Fabrication
- Conclusion


Fabrication Non-Uniformity

Fabrication-induced Process Variation (PV)

Why Does It Happen?

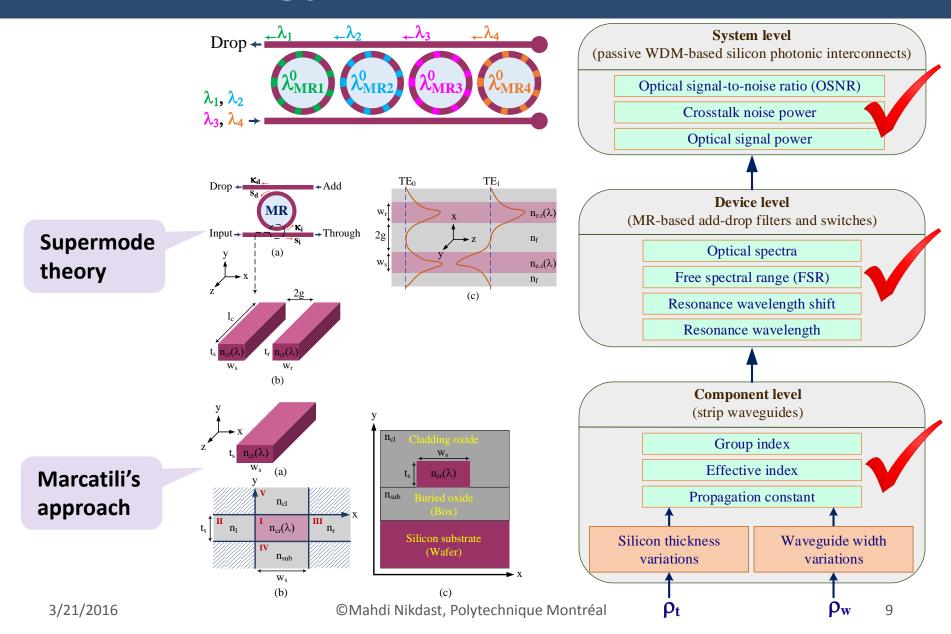

- Optical lithography process imperfection
 - Resist sensitivity
 - Resist age or thickness
 - Exposure change
 - Etching
- Primary concerns
 - Waveguide width variations
 - Top silicon thickness variations

Different Perspectives

- No detailed analytical study on process variations
- Lack of tools
- Difficult problem to study
- > Expensive problem
- Interaction between the two communities

- Characterize several <u>identically</u> designed devices
- Understand variations
- Lack of system perspective
- Consider process variation as an <u>issue</u>
- Corner analysis
 - Numerical simulations (e.g., FDTD)
 - Moderate computation cost

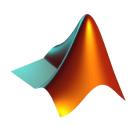
- Design solutions
 (e.g., channel relocation)
 (e.g., reliable design)
- <u>Ignore/manage</u>
 process variations
- Lack of device perspective
- Corner analysis
 - No tool available
 - Not feasible


Our Contribution

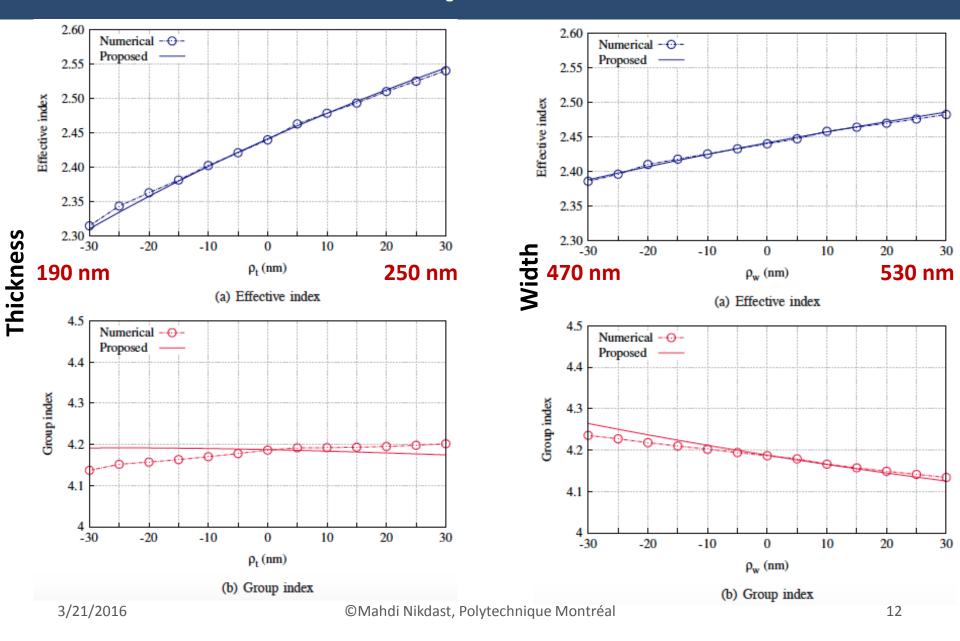
- A computationally efficient and accurate method
 - Explore different variations at both levels
 - PV study in large-scale photonic interconnects
 - Corner analysis at the system level

- Fabrication non-uniformity in silicon photonics
- Proposed bottom-up approach
- Quantitative simulation results
- Fabrication
- Conclusion


Methodology Overview



- Fabrication non-uniformity in silicon photonics
- Proposed bottom-up approach
- Quantitative simulation results
- Fabrication
- Conclusion


Quantitative Simulations

- Numerical simulator (use for evaluations)
 - MODE (Lumerical)
- MATLAB implementation
- Strip waveguides original dimensions
 - Width: 500 nm
 - Thickness: 220 nm
- Simulation parameters
 - Arbitrary variation range: [-30, 30] nm
 - Central laser wavelength: 1550 nm
 - Gap (input/drop waveguide and MR): 200 nm
- Fundamental TE mode

Effective and Group Indices

Optical Spectrum of an Add-Drop Filter

Drop 🖚 ← Add • radius r = 9 μ m, coupler length I_c = 4 μ m, gap 2g = 200 nmFSR≈ 9 nm Free-Spectral Range (FSR) 0.9 0 9 0.8 0.8 110 Ш 0.7 0.7 b **Fransmission** 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.11540 1544 1548 1556 1560 1530 1538 1546 1562 1570 1552 1554 Wavelength (nm) Wavelength (nm)

Silicon thickness variations (±10 nm)

Transmission

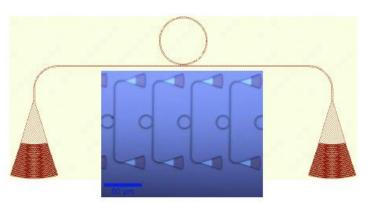
Waveguide width variations (±10 nm)

Complexity Comparison and Evaluation

- Proposed method vs. numerical simulation (MODE)
- Same computation platform
- All the results up to the system level

Method	Computation time	Average error rate
Numerical (MODE)	128 minutes	
Proposed	54 seconds	(1%)
Порозец	J- Jeconus	1 /0

- Speed-up: greater than 100x
- Average error rate 1%


- Fabrication non-uniformity in silicon photonics
- Proposed bottom-up approach
- Quantitative simulation results
- Fabrication
- Conclusion

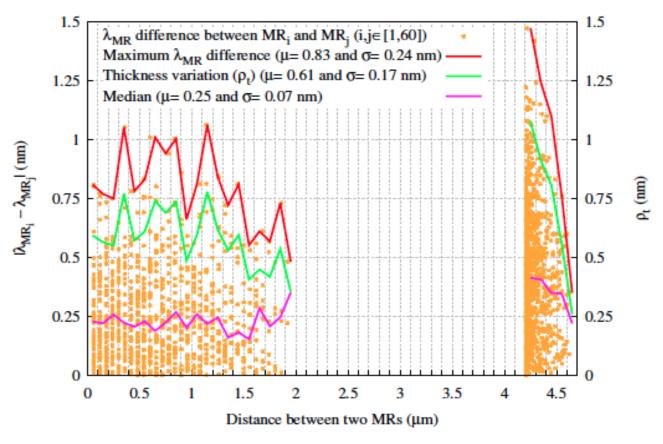
Fabrication Details

- 220 nm thick SOI strip waveguide with a 500 nm width
- TE polarization racetrack resonators
 - Radius= 10 μm
 - Coupler length≈ 1 μm
 - Gap= 200 nm
 - FSR≈ 9 nm


- Fabrication: Ebeam (U of Washington) (2 nm resolution)
- Measurements: UBC (automatic probe station)
- 2.1×4.5 mm²
- Sixty identical copies
- Placed between 60 μm and 4.2 mm
- Within-die variations are studied

Resonance Wavelength Shift

2.1 nm (worst-case) and 0.6 nm (best-case)


- Process variation
- No thermal variation
- Negligible width variations
- Thickness variations
 - 2 nm (worst-case)

Mahdi Nikdast, Gabriela Nicolescu, Jelena Trajkovic, and Odile Liboiron-Ladouceur, "Photonic Integrated Circuits: a Study on Process Variations," Optical Fiber Communication Conference and Exhibition (OFC), Anaheim, California, USA, March 2016.

Resonance Wavelength shift vs. Physical Distance

• Compared each pair of MRs: $\binom{60}{2}$ =1770

Resonance wavelength difference vs physical distance

- Fabrication non-uniformity in silicon photonics
- Proposed bottom-up approach
- Quantitative simulation results
- Fabrication
- Conclusion

Conclusion

- Fabrication non-uniformity is an issue both at the Physical Level Design and System Level Design
- Proposed a computationally efficient and accurate method to study fabrication process variations in large-scale systems (100x, 1%)
- Corner analysis at physical level and system level
- Need MORE silicon photonics fabrications

Thank You!

Mahdi Nikdast
E-mail: mahdi.nikdast@{polymtl/mcgill}.ca
Webpage: http://nikdast.com