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Photonics Need High Power Lasers

¢ Emergence of photonics
¢ High bandwidth, low latency, energy efficient
¢ Wide range of apps: manycores, multi-chip, datacenters

¢ However, lasers are really power-hungry

o Optical devices induce optical loss (13+ dB is typical)
o WDM-compatible lasers are 5—30% efficient

®» 10—-20x higher power than required optical output
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Most of the Laser Power is Wasted
Demir & Hardavellas [HPCA’15] [NOCS’15] [SPIE’15] [IPC’14] [ISLPED’14]

¢ Interconnect may stay idle for long times
o Compute-intensive execution phases of workloads
a 30% server utilization in data centers [Barroso 2007]

e But laser stays always on!

o ...even during periods of interconnect inactivity

®» Up to 94% laser energy waste in real-world workloads
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Proposed Solution: Laser Power-Gating

Turn the lasers off when interconnect is idle

Turn the lasers on before sender transmits
o This may be tricky... needs early warning or predictive schemes

Overlooked until recently

o Traditional comb lasers are slow to turn on

New enabling technology: Fast on-off switching on-chip lasers
o InP, Ge, ... Turn on/off in 1.5-2 ns

a On-chip = simplify design and lower cost

a [HPCA’15] [SPIE’15] [IPC’14] [ISLPED’14]

4

© Hardavellas




McCormick
Northwestern Engineering

ProlLaser: Energy-Proportional Photonic Nets.

e Power saving mechanism for photonic interconnects

o Laser power-gating
- Independent power gating for data and control bits

- Predicts laser turn-on
-> Saved power can be used by the cores

¢ Result highlights
o Laser energy reduction: 42—88% (61% on avg.)

o Processor energy reduction: 35-52% (40% on avg.)

0 Leads to 50-73% speedup (60% on avg.)

o Within 2-6% of the theoretically maximum savings
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Architecture Assumed: Tiled Multicore
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Architecture Assumed: R-SWMR Optical Crossbar
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Most on-chip messages

are short. On average:

88 bits

35% are Data Messages
600 bits

65% are Control Messages WDM Laser Ay
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Segregating Data from Control Bits

[LaC, Demir & Hardavellas, IPC'14]
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® Turn on the common bits (44) for all types of data
®» Turn on the data-only bits (300) for data messages only
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Predictive Laser Turn-On: Communication Initiation

i 3 10+ cycles

1 cycIe 1000101111010101

¢ Bloom filter monitors LLC

o LLC access: ~14 cycles

LLC slice o LLC tag lookup: ~10 cycles
o Bloom filter: 1 cycle
‘3
Tile Core, L1 ¢ 1KB counting Bloom filter

o <2% false positive
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Laser Control Co-design with Coherence Protocol
[Ecolaser+, Demir & Hardavellas, SPIE’15]

Forwarded Request
Request LLC slice
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e Anticipates laser activation

e Which laser / plane to turn on?

¢ When to turn it on?
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Laser Control Co-design with Coherence Protocol

[Ecolaser+, Demir & Hardavellas, SPIE’15]

o Correlates cache coherence requests to replies
o Activates laser early = hides laser turn-on delay

o Predict cache miss = turn on requestor’s control plane

o Request to directory = turn on directory’s control plane

o Directory forwarding = turn on owner’s control+data plane
o etc... (including memory controller)

o Turn-on the laser just 1.5ns before the payload is ready
o Minimum latency for each operation
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Router Microarchitecture (R-SWMR)
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®» Bloom filters + coherence protocol = predict accesses
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Off-chip laser die
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Controlling Off-chip Laser Source
[Heck & Bowers, JSTQE’14]
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®» 70% messages on avg. = 9 cycles apart (1.8ns), 40% are = 4ns
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ProLaser Energy Savings
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®» ProlLaser saves 49—88% of laser power
®» 35—-52% lower energy / instruction (40% avg.)
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ProlLaser: Performance Impact on Real Workloads
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» 60% speedup over No-Ctrl; 40% over flattened buttefly
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Teaser Slide: Laser Gating in the Datacenter
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®» SLaC w/OFF optimization saves 79% of the laser energy
®» Similar results with Facebook and Microsoft traces
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Conclusion

Problem: lasers are really power hungry, mostly wasted power

Our solution: laser power-gating (ProLaser, SLaC, Ecolaser (+), LaC)

Significant energy reduction
o Laser: 42-88% (61% on avg.), Processor: 35-52% (40% on avg.)
o Within 2-6% of the theoretically maximum savings
o Power reduction leads to speedups: 50-73% (60% on avg.)

Applicable to a wide range of scales (on chip, multichip, datacenter)

Thank you! Questions?
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Backup Slides

19 © Hardavellas

MCcCormick
Northwestern Engineering

Simulation Tool Chain
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Experimental Methodology

CMP Size 64 cores, 580 mm?
Core ULTRASPARC III ISA, up to 5Ghz, 000,

4-wide dispatch/retirement, 96-entry ROB
L1 Cache Split I/D, 64KB 2-way, 2-cycle load-to-use, 2 ports,

64-byte blocks, 32 MSHRs, 16-entry victim cache
L2 Cache 512 KB per core, 16 way, 64-byte blocks, 14 cycle-

hit, 32 MSHRs, 16-entry victim cache
Memory One per 4 cores, 1 channel per Memory Controller,
Controller Round-robin page interleaving
Main Memory Optically connected memory [3], 10ns access
Network R-SWMR radix-16 crossbar and firefly,

300-bit wide links @ 10GHz, 20 flit deep buffers,

3 cycle router delay
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Nanophotonic Parameters
Radix-16 SWMR On-Chip Laser  Off-Chip Laser
per Unit Total Total
DWDM 64 64
Splitter | 0.2 dB 0.6 dB 0.6 dB
WG Loss | 0.3dB/cm | 3dB 3dB
Nonlinearity | 1 dB 1dB 1dB
Modulator Ins. | 0.5 dB 0.5 dB 0.5dB
Ring Through | 0.01 dB 10.24dB 10.24 dB
Filter Drop | 1.2 dB 1.2dB 1.2dB
Coupler | 2dB 4dB
Total Loss 16.64 dB 20.64 dB
Detector -20 dBm -20 dBm
Laser Power 0.461 mWw 1.158 mWw
Per Wavelength
Total LaserPower | /5% Eff. 148 W 371w
22 © Hardavellas
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Workloads

e Fmm: Input 128K

e Moldyn: 15, 20,3.2 M

e Barnes: Input 64K

e Tomcatv: 4096, 10

e Appbt: in.24x24x24x8bit
e QOcean: 1026, 9600

e Em3d: 400K, 2, 15, 5

e Bodytrack
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Interconnect Performance
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Interconnect Energy
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®» ProlLaser saves 49—88% of laser power
®» Prolaser is ~2x better than Ecolaser; 2—6% of Perfect
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Sensitivity to Laser Turn-On Delay
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®» Prolaser tolerates 2.3x higher laser turn-on delay than Ecolaser
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Speedup (On-chip Lasers)
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Speedup (Off-chip Lasers)
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Router microarchitecture for SWMR Ecolaser
[Ecolaser, Demir & Hardavellas, ISLPED’14]

S |
5 o R RCHy Switch Allocator ¢ Laser |
g £ . ,' & VC Allocator Controller |
q) @ ner I
n < RCH, / u |
v O Yy v 7 Ui 1
-4 200 Inject1 |vco[T1]
o my | - '
U il N I : ve2 :
N
o) AA M « !'Injectc |veeCIId |
o O b:l | >\vaT P Data Channel i
® halcN | velTT]
8 & . ¢ h Reservatlon Channell
6 1
+ Eject1 |
. |
Eject C |
I

Message in injection buffers = Laser Turn On
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Router Microarchitecture for MWSR Ecolaser
[Ecolaser, Demir & Hardavellas, ISLPED’14]
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MWSR Optical Bus
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