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Context
Ever larger bandwidths required at all scales•

From CPU– -to-CPU to continent-to-continent
Transition to larger bandwidths may occasion shifts to alternative •
technologies

Long distance– -link have shifted year ago from copper to optics
Such a transition to optics has yet to occur for short distances (– 1-10cm)

Mainly for practical (=cost) issues: exotic materials required by optical •
components, unconventional and potentially bulky packages, etc.

Silicon photonics can potentially offer a solution to most (many?) of •
these practical issues

Mass and cheap production through CMOS compatibility–
Close integration with digital logic–

This does not necessarily mean that shift to silicon photonics will occur•
Will SiP outperform competing technologies, at – “bandwidth scale”?
Is there (semi– -hidden) threats to SiP functionality, at “architecture scale”?
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Outperforming competitors’ cost and power
Cost:•

Silicon photonics needs–
An external laser (array)•
Edge coupling with external world (at least for laser)•
Area for driver circuitries (one per wavelength!)•

To be compared with new cabling solutions, novel signaling schemes used –
in electronic transceivers

Power:•
Elec. transceivers for intra– -chip communication (1cm) achieve 0.1 pJ/bit [1]
Elec. transceivers for inter– -chip communication achieve 65 fJ/bit [2]
These figures will probably improve by the time silicon photonics reaches –
maturity
We need to target such figures at least

Need for a in -depth optimization of device parameters and process
Especially at high data -rates

[1] Wary et al. “High-speed energy-efficient bi-directional transceiver for on-chip global interconnects”, 2015
[2] Niitsu, et al. IEEE Trans. On VLSI 20 (7), 2012
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Ensuring functionality at scale
• Very few end-to-end demonstration 

of silicon photonic systems so far
• Demonstrations often include “tricks” 

– Optical amplifiers
– Piecewise demonstration
– Loss normalization
– Device control with sophisticated lab equipment

• Multiple threats to correct functioning still remain
– Fabrication variability, susceptibility of components to this variability

• Insertion losses must be pushed to the minimal and no “surprise” 5dB can be 
tolerated

– Integrated control (i.e. on chip) of devices, area and power it consumes
– Underestimation of optical impairments as crosstalk

• Especially at high-rate and at scale

 Need for comprehensive models taking into account all these aspects

[C. Sun et al., Nature 528, 2015]
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Review of ring resonator
• Ring: 

– A circular waveguide with properties:
• Effective refractive index neff

• Waveguide loss αwaveguide (1/m or 1/cm or dB/cm)
Obtained by numerical methods (FDTD or FEM)

– Radius R affecting:
• Resonance

• Loss in the ring

– Gap size affecting:

• Coupling coefficient
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Investigating ring loss and coupling coefficients
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High level metrics for ring resonators

• Ring bandwidth (a.k.a FWHM)
– Range of filtered frequenties
– Related to Q-factor

• Free spectral range (FSR)

• Transmission at resonant 
frequency 
– vestiges from filtering

• Transmission at detuning 
of FSR/2
– exactly between

resonances

FSR

BW3dB

ER

Round-trip phase inside the ring

TRres

TRmax
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Good signal suppression (at resonance)•

Critical coupling: 

TR res ~ 0

FSR large enough to maximize WDM capabilities•

Low suppression outside resonance •

 TRmax > -0.05 dB (cascading 20  1dB, cascading 100  5dB)

Bandwidth large enough to support signal•

 FWHMGhz > ~BitrateGbit OOK

Ring resonator filter – desired properties
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Ring resonator filter – reducing design space
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Impact of high-speed signals
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Impact of WDM and fab PDK

• Zones of feasibility for simple filters
– Multiple channels: impose additional restriction on insertion loss 
– Insertion loss must stay low (here <0.05dB) around neighboring channel

• IL(detuning = 50nm/#channels – bitrate) < 0.05dB
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Ring diameter limitation

Selection of designs•
leading to signal suppression of
-15dB at least

Below • 4µm, loss inflicted to
other channels increases sharply

Progress on PDK do not provide•
much help.

Result in small FSRs of • 22 nm at most
To be compared with the ~– 200nm 
exploited in the fiber world 3.5 4 4.5 5 5.5 6
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Third design parameter: • output gap size

Critical coupling condition: •

Transmission (thru)•
at resonance:

Transmission (drop)•
at resonance

Transmission (thru)•
out of resonance
(at FSR/2):

Thru transmission

Drop transmission

Ring resonator drop
R neff

gin

gout

TRres

DRmax TRmax
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Ring drop – parameter space
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Gap size (nm)
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Balancing truncation and crosstalk
• Modulated signals

occupy a broader range
of bandwidth
– Relevant part proportional

to the bitrate
 Signal truncation: some of

the relevant part is not
dropped

– Occupied spectrum potentially infinite
 Filtering cross-talk: some of the infinite part of the other channels

is dropped as well
 Truncation comes at the expense of cross-talk and vice-versa

Tb 2Tb 3Tb 4Tb 5Tb
time

Light intensity

Tb 2Tb 3Tb 4Tb 5Tb
time

Light intensity

Tb 2Tb 3Tb 4Tb 5Tb
time

Light intensity
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time

Light intensity
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time

Light intensity

Ideal modulator with 
infinite bandwidth

Rise time

Fall time

frequencyfrequency

CW laser

2rb
frequency2rb2rb
frequency

Power Spectral 
Density

High truncation

Low bandwidth ring Signal spectrum High bandwidth ring

Low truncationCrosstalk
if neighboring

channel is close

Very small
leakage in
other channels
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Bandwidth/Q factor picking
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Impact of BW/Q: Truncation of the Spectrum
Depends on the • modulation speed (rate)
Depends on the Q of the ring•

Truncation penalty reflects how much •
the strength of the information is reduced 
by the narrow-bend optical filter

If Q •  0 (infinite bandwidth)
TPP –  0 (no filtering effect)

Taking into account 
possible detuningTaking into account 

Bandwidth of ring 
and DATA RATE

Power Penalty due 
to the high Q

Resonance freq. 
of ring (f0 = c/λ0)

Freq. detuning 
from f0

(dB)
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Impact of BW/Q: Reduction of the OOK Extinction
• Limited BW of ring reduces the ER of OOK modulation
• Impact on ER depends on the input ER (itself dependent on modulation)

NRZ OOK system

A
B

A
B

Tb 2Tb 3Tb 4Tb 5Tb

Distorted NRZ OOK

A’
B‛

Tb 2Tb 3Tb 4Tb 5Tb

B’
A’ A‛

B’

erin = A2/B2 erout = A’2/B’2

Taking into account 
Bandwidth of ring 
and DATA RATE

Q ≈ 20000
BW3dB ≈ 10 GHz
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Impact of BW/Q: effect of other filters

• Attenuation of the Lorentzian tail for drop path
– at critical coupling

• Attenuation for the through path 
– at critical coupling

Insertion Loss at the resonance
(a function of Q factor) Extra attenuation by detuning from the resonance 

(a function of Q factor)

(drop)

Possible detuning
Resonance 
frequency

Not shown in dB

(thru)
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Total Penalty of a Single Add/Drop Ring Filter

Increasing Q will increase both the IL penalty and Truncation Penalty

Increase of DATA RATE

R = 10 µmR = 10 µm @ critical coupling (any rate)

Playing with the gap size

decrease of Radius

αloss = 2.8 dB/cm



Rev PA1Rev PA1 23

• Optical Crosstalk as a noise mechanism

• 0th-order Approximation
– ignore the spectral bandwidth of modulation OOK light

– Assume all the optical power is at the carrier (center) wavelength

– Good approximation for LOW data rates and/or FLAT filters
– This method has been widely used

 L. H. Duong et al., “A case study of signal- to-noise ratio in ring-based optical networks-on-chip,” Design & Test, IEEE, vol. 31, no. 5, 
pp. 55–65, 2014.

 L. H. Duong et al., “Coherent crosstalk noise analyses in ring-based optical interconnects,” in Proceedings of the 2015 Design, 
Automation & Test in Europe Conference & Exhibition, pp. 501–506, EDA Consortium, 2015.

 J. Chan et al., “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” Computer-Aided 
Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 30, no. 10, pp. 1507–1520, 2011.

Impact of Q: Crosstalk in Ring Filters
Target BER Xtalk power (total)

Effect of ER of OOK
(sensitivity to noise)

NRZ optical power

≈
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Impact of Q: Crosstalk in Ring Filters
• 1st-order Approximation

do not ignore the spectral shape of the OOK modulation–

estimate the crosstalk power –
based on the Lorentzian shape of the ring

based on the spectral shape of the NRZ OOK modulation

based on the DATA RATE

Fraction of crosstalk 
power from each NRZ 

channel

data rate
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Optimization results

[Bahadori et al., Optical Interconnects, 2015]

[Bahadori, et al. JLT, under revision]
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Examples of Fabricated Rings
• P. Dong et al., Optics Express (2007)

Widely cited•
But we could do better•

Reduce drop loss•
Pick the ideal BW for link•

 Measurements do not match model (higher loss in ring in 2007)  

• R = 100 µm (very big ring)
• Q ≈ 19000 (measured), 
• Designed for critical coupling

drop loss ≈ 3.5 dB (measured), 3.9 dB (model)

thru loss ≈ 0.4 dB (measured), 0.003 dB (model)

thru ER ≈ 18 dB (measured), 12 dB (model)
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Another ring

Analysed in Q. Li, PTL • 27(18), 2015
– tin = tout = 0.91        
– κin = κout = 0.44     
– Q = 1842
– α = 6 dB/cm

No critical coupling!–

Power penalties (measured):–
Thru: • -0.1 – -0.8dB (channel dependent)
Drop: • -0.4 – -1.8dB
(10 Gbps signals)



Rev PA1Rev PA1 28

Examples of fabricated ring: filter/modulator

• Q. Li et al., OFC (2014)

Modulator: R = 8 µm, Q = 4300 

• Q. Xu et al., Opt. Express (2007)

Modulator: R = 5 µm, Q = 20000 ! 

Laser 
linewidth

Power of bit “1” R

neff

g
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Link

Energy per bit
Link

Pin
P

ar
am

Input laser power,
Number of wavelengths,

Modulation rate

Bandwidth

Model the flow and characteristics of optical signal along the link

Methodology - Abstraction of Physical Devices

Laser Modulator Detector

Abstract Physical Models

DemuxSwitch

Explore both device
and link parameters to
optimize bandwidth
or energy efficiency
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Methodology - Energy Analysis (pJ/bit)

Energy Analysis

Electrical CircuitsOptical Loss

Required Laser Power Transmitter Receiver

Thermal TuningThermal Tuning

Serialization

Modulators

Amplifier

Deserialization

Receiver Sensitivity

Energy 
Circle

FEC encoder FEC decoder

FEC
gain
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Goal: conduct link wide optimizations
E.g. extinction ratio (optical signal quality) vs. voltage (power •
consumption)
 For low number of wavelengths, largest resonance shift not required [1,2]

[1] R. Wu, et al. “Compact modeling and system implications of microring modulators in nanophotonic interconnects”, ACM SLIP 2015
[2] S. Rumley, et al. “PhoenixSim: Crosslayer Design and Modeling of Silicon Photonic Interconnects”, AISTECS workshop, 2016
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Conclusions
Ring resonator based interconnects as very complex systems•
requiring fine tuning

Point I was thinking to make at this workshop: mind the ring bandwidth!–
After making these slides: even more complex design space!–
For every ring:

Input gap, output gap, radius, (doping)•
Find the right BW (depends on the architecture, bit• -rate), align the wavelength, 
balance losses (also depends on the architecture), reach desired FSR…

 Constant power penalty based approach questionable
Can be very conservative, or very optimistic, depending on the context•

Silicon photonics still lacks maturity•
Well defined compact models, PDKs need to be defined–

Previously proposed designs should be re• -assessed against these definitions
Large scale modeling/design methodologies building on these PDKs to be –
developed
The (current) impossibility to realize small rings is a big concern–
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