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Context

« Ever larger bandwidths required at all scales
— From CPU-to-CPU to continent-to-continent
« Transition to larger bandwidths may occasion shifts to alternative
technologies
— Long distance-link have shifted year ago from copper to optics

— Such a transition to optics has yet to occur for short distances (1-10cm)

« Mainly for practical (=cost) issues: exotic materials required by optical
components, unconventional and potentially bulky packages, etc.

« Silicon photonics can potentially offer a solution to most (many?) of
these practical issues
— Mass and cheap production through CMOS compatibility
— Close integration with digital logic
* This does not necessarily mean that shift to silicon photonics will occur
— Wil SiP outperform competing technologies, at “bandwidth scale”?
— Is there (semi-hidden) threats to SiP functionality, at “architecture scale™?



Outperforming competitors’ cost and power

e (Cost:

— Silicon photonics needs
« An external laser (array)
« Edge coupling with external world (at least for laser)
» Area for driver circuitries (one per wavelength!)

— To be compared with new cabling solutions, novel signaling schemes used
In electronic transceivers
 Power:
— Elec. transceivers for intra-chip communication (1cm) achieve 0.1 pJ/bit [1]
— Elec. transceivers for inter-chip communication achieve 65 fJ/bit [2]

— These figures will probably improve by the time silicon photonics reaches
maturity

- We need to target such figures at least
- Need for a in-depth optimization of device parameters and process
- Especially at high data-rates

[1] Wary et al. “High-speed energy-efficient bi-directional transceiver for on-chip global interconnects”, 2015
[2] Niitsu, et al. IEEE Trans. On VLSI 20 (7), 2012



Ensuring functionality at scale

] ; il - ph?:-:g?i;e?:;or
* Very few end-to-end demonstration == .
of silicon photonic systems so far el | g
. . . —+— controller
 Demonstrations often include “tricks”

frontend
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— Optical amplifiers o Digital circuis
. . . ; y # e backend and
— Piecewise demonstration _ H meﬁmﬂer B8 tuning controller
— Loss normalization [C. Sun et al., Nature 528, 2015]

— Device control with sophisticated lab equipment
« Multiple threats to correct functioning still remain

— Fabrication variability, susceptibility of components to this variability

* Insertion losses must be pushed to the minimal and no “surprise” 5dB can be
tolerated

— Integrated control (i.e. on chip) of devices, area and power it consumes
— Underestimation of optical impairments as crosstalk
» Especially at high-rate and at scale

- Need for comprehensive models taking into account all these aspects



Review of ring resonator

 Ring:
— A circular waveguide with properties:
« Effective refractive index n

« Waveguide l0ss oayequige (1/m or 1/cm or dB/cm)
—> Obtained by numerical methods (FDTD or FEM)
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Investigating ring loss and coupling coefficients
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Ring bandwidth (a.k.a FWHM)
— Range of filtered frequenties
— Related to Q-factor
Free spectral range (FSR) FSR, = A ] .
27 Rn, c
% BW3dB
. . 2 2 -4
Transmission at resonant {1_ < } 5 ER
frequency m, = £ -5
— vestiges from filtering (”2”3(1} S g
o
( ) -7
Transmission at detuning { A0 J:\l_znfzaJ
( 2 )2 o
of FSR/2 S (T J 8 FSR]
— exactly between Mo = AQ\ : -9~ . :
resonances {mnj + TR, ®/(2n)

Round-trip phase inside the ring




Ring resonator filter — desired properties

* Good signal suppression (at resonance)

- Critical coupling: L =1- K'2 — [27Z'Ra ~ ]('2]
> TR, ~ 0

 FSR large enough to maximize WDM capabilities

* Low suppression outside resonance

- TR,.., > -0.05 dB (cascading 20 - 1dB, cascading 100 - 5dB)

max

« Bandwidth large enough to support signal



Ring resonator filter —reducing design space
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= Attenuation at = _
\E;lO- resonance = 10¢ attenuation | |
z .
= 3 8
g ° S
=% o
S 6] £ 6
o ASE= x \00<\

g 4

100 200 300 400 % 100 200 400
~Gap size (nm) ‘Gap size (nm)

€
S 10| —E S1o
3 S
o 5 ]
- S
2 6¢ Oi L‘\L D el /
= c 6
oY Ring bandwidth %

100 200 300 400 4 160 260 360 400
Gap size (nm) Gap size (hm)

10



Impact of high-speed signals
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Ring radius (um)

Impact of WDM and fab PDK
7 ! H ! 7 1 ! 1 7 1 | ! :
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Zones of feasibility for simple filters
— Multiple channels: impose additional restriction on insertion loss

— Insertion loss must stay low (here <0.05dB) around neighboring channel
» |L(detuning = 50nm/#channels — bitrate) < 0.05dB
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Ring diameter limitation

« Selection of designs ° II'[III’F""'?"""'
leading to signal suppression of I = Current PDK
-15dB at least II B  Futuristic PDK
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* Resultin small FSRs of 22 nm at most .
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Ring resonator drop

* Third design parameter: output gap size

.. : .. _ 1
» Critical coupling condition: =1 K, _ Lo
1-K0 Lo
* Transmission (thru) e Ko K
at resonance: TR ~|_ 27Ra 27Ra
ol
2nRa 2nRa
e Transmission (drop) i
at resonance Ko Kin
DR__ = ’(22%1{’@"(2
1+ o &
2nRa 2zRa
* Transmission (thru) 0 |
out of resonance - 27Rn, IR
(at FSR/2): (a0 Y
+1
27Rn,

Power Transmission (dB)
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Drop transmission
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Design space pruning

Ideal drop loss (0.1 dB)
But high thru loss (0.05 dB)

Truncation limited

Ideal thru loss (0.002 dB)
but high drop loss (0.5 dB)

Ring radius {um)
||_\

O— How to choose? Depend
e on the architecture

(number of thru, drop)
e number of channels

,\-channel rate
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Balancing truncation and crosstalk

Ideal modulator with
infinite bandwidth

« Modulated signals Hoht trensity Light intensity
occupy a broader range :
of bandwidth — K
. T, 2T, 3T, 4T, 5T, | T, 2T, 3T, 4T, 5Th\flme
— Relevant part proportional Rise time
to the bitrate Power Spectral
. . D it
> Signal truncation: some of CWlaser = e
the relevant part is not frequency T frequency
dropped "
— Occupied spectrum potentially infinite
—> Filtering cross-talk: some of the infinite part of the other channels
Is dropped as well
—> Truncation comes at the expense of cross-talk and vice-versa
Low bandwidth ring S|gna| Spectrum ngh bandwidth ring
High truncation — Very small Crosstalk /ow truncation
leakage in if neighboring

other channels channelis close
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Bandwidth/Q factor picking
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Impact of BW/Q: Truncation of the Spectrum

« Depends on the modulation speed (rate) _ | I 50Gbis
« Depends on the Q of the ring 4
39  Model = 1l
g |
_ - 2| . :
e Truncation penalty reflects how much 3 | meaturembrite. | 3dB
the strength of the information is reduced B \ E
by the narrow-bend optical filter o} - .
Data Rate (Gb/s)
(dB) 1+ 52 1 — 6—27T1/(1—j6)
TPP = —5logp | 1 — Real ,
2
\ 2TV (1—40)
Power Penalty due \ \ B — @ A
to the high Q fo - Jo 'l
/) — ~o [
. e e . . 2@ X T ‘\\‘ Taking into acq'(_)unt
fQ—->0 (Inflnlte bandWIdth) Taking into account  Resonance freq, possible detuning
— TPP - 0 (no filtering effect) Bandwidth of ring  of ring (f, = ¢/4) v
and DATA RATE Freq. detuning

from f,
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Impact of BW/Q: Reduction of the OOK Extinction

e Limited BW of ring reduces the ER of OOK modulation

 Impact on ER depends on the input ER (itself dependent on modulation)

Q = 20000

| BW,4s = 10 GHz

T, 2T, 3T, 4T, 5T,

15 - - -
. o - Rate = 10 Gb/s
VETout vV ETin — X /7 Z | |- Rate=100Gbss
€T out + 1~ Verin + 1 % 10}
aking INto account _ _ —
Bandwidth of ring |y = ] — 1 — exp(—27v) a °
and DATA RATE 2y g __—
. Jo S 7 9 1113 15
— 9 Q X T Input Extinction (dB)
E(t) er;, = A?/B? ,/": """"" . > E(t) ery, = A'%/B"
A I A
A A ! | | (1, 0)
I ] (] (]
| B B B
_ E_IE - (pn,0) 1 O | fLrLfL
> 1 él\ ] i
T, 2T, 3T, 4T, 5T, N e e e e /
NRZ OOK System

Distorted NRZ OOK
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Impact of BW/Q: effect of other filters

e Attenuation of the Lorentzian tail for drop path

Not shown in dB

— at critical coupling — FWHM
IL Penalty = —10log;, (1 — Qi—;\O> — 10log;, L 5 \
(drop) g 2Q
\\ ~~ _/ \ 1+ < fo fA) Y, f,-f, f
/ Y fo
\/ N Resonance
Insertion Loss at the resonance ) _ Possible detuning frequency
(a function of Q factor) Extra attenuation by Qetunlng from the resonance
(a function of Q factor) % , .
BER = 10°
. 4r
« Attenuation for the through path 3
— at critical coupling (fo )2 23t a8
T JA a h
IL Penalty = —10log;, o 5 5 2} Measurements ,
(thru) 1+ (%c—?fA) ”?1_ ‘




Total Penalty of a Single Add/Drop Ring Filter

Increasing Q will increase both the IL penalty and Truncation Penalty

R =10 um @ critical coupling (any rate)
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Impact of Q: Crosstalk in Ring Filters

o Optical Crosstalk as a noise mechanism  Target By

1 (Pepapder +1)
PP ~ —101 1 — — : I :
XTalk 0Z10 ( ¢BER! Py /55\67“ 1

2
 Oth-order Approximation N et of £R of OOK
— ignore the spectral bandwidth of modulation OOK light (sensitivity to noise)

AL A= |

— Assume all the optical power is at the carrier (center) wavelength

______________________

N

1
\

\
1
1
I
1

NRZ optical power

/

— Good approximation for LOW data rates and/or FLAT filters
— This method has been widely used

v' L. H. Duong et al., “A case study of signal- to-noise ratio in ring-based optical networks-on-chip,” Design & Test, IEEE, vol. 31, no. 5,
pp. 55-65, 2014.

v" L. H. Duong et al., “Coherent crosstalk noise analyses in ring-based optical interconnects,” in Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, pp. 501-506, EDA Consortium, 2015.

v'J. Chan et al., “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 30, no. 10, pp. 1507-1520, 2011. 23



Impact of Q: Crosstalk in Ring Filters

1st-order Approximation

— do not ignore the spectral shape of the OOK modulation
N

P ~ P X F

( XTalk)Zth Ring N2 Z ’J\ Fraction of crosstalk
: J=1J 7’5’6 power from each NRZ

— estimate the crosstalk power channel

v’ based on the Lorentzian shape of the ring
v’ based on the spectral shape of the NRZ OOK modulation NG
v based on the DATA RATE / =" "*~data rate
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Optimization results

@8 (b) i m 2 3)(5)(4)(6 Iz 1 I :
= 50 Channels @ BIEHDEH2ND [worst Case =2 dB |
2 21.5f ”"*a, - (1)(2)(3) 4)(5)(6) 4
CU L
% 6- gc': e :*.M‘.g:" 21,
o Optimum Curve s K = .
o 4} 3 (6)(1)(5)4)(2)(3) o,
[ € | Saddds 0 T,
= E U SI' ™ L an®" T
LL m S
— v; | Best Case = 1.18 dB
© 2} : . | .
= 0
O 1 2 3 4 5 6
— Ring Number

1 0 1 5 20 [Bahadori, et al. JLT, under revision]

Quallty Factor (x 1000)

[Bahadori et al., Optical Interconnects, 2015]
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- UM
Examples of Fabricated Rings

« P. Dong et al., Optics Express (2007)

drop loss = 3.5 dB (measured), 3.9 dB (model) E
 TaaTaa TR 3 A TG
X T 1T 11T T T 1T T
@ ;
:E- ] A i
y10% £ £ £ ¢ £ : £|% F 4
O | S T N N N A !
e df F R T LR
I | O EO O L LW L L R
% 'zni “u: "“,: Ilu"' “'\-” "": .l.‘; "-" :il W
'255 —throughpoﬂ
—_— | [
« R =100 um (very big ring) B C———
e Q=19000 (measured), 1535 1537 1539 1341 1543 1545
« Designed for critical coupling wavalensthnm)

thru ER = 18 dB (measured), 12 dB (model)

* Widely cited

» But we could do better
* Reduce drop loss
e Pick the ideal BW for link

- Measurements do not match model (higher loss in ring in 2007)
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Another ring

 Analysedin Q. Li, PTL 27(18), 2015

tin = 1:out =091
Kp= K =0.44
Q= 1842

a = 6dB/cm

No critical coupling!

Power penalties (measured):

e Thru:
* Drop:

-0.1 — -0.8dB (channel dependent)
-0.4 —-1.8dB

(10 Gbps signals)

Port 1

Port 2

Power Penaltyld BL

Drop State

cau g

Port 4

icroring
Switch
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Through State
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R R A S B S
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| = Bar

optimal
coupling
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/ swi
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0.86 0.88

0.90

0.92 0.94 0.96

Coupling strengtht
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Examples of fabricated ring: filter/modulator

____________________________________________

____________________________________________

I\
.

E —+—1.8V; 58A

Power (dBm)
Normalized Transmission (dB)

Input

15412 15416 15420 15424 |
Wavelength (nm)

T T T T T T
1558.4 1558.6 1558.8 1559.0
Wavelength (nm)

. Modulator: R = 8 um, Q = 4300 Modulator: R =5 pm, Q = 20000 !

S
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Methodology - Abstraction of Physical Devices

B I Explore both device
Input laser power, | | and link parameters to
Number of wavelengths, - £ optimize bandwidth
Modulation rate — O or energy efﬁciency
vy
- Bandwidth
_I n k ,"I —
Laser p Modulator Detector Energy per bit
in
@ * @ = _\/_\/_ - @ : NN
> === g < | >‘
Switch Demux »
Abstract Physical Models
(b) Pclcitrical (b) Pclcitrical (b) Pclcitrical
P in s . - P _OUL P D s . - P _OUL P D s . - P _OUL
Pty Device _-»piou' Pyin— —p, Device __.Piom Pn = Device --»Piﬂu'
r v r v r v
€I, Clout Cri, Clout Crip, Clout
Model the flow and characteristics of optical signal along the link -
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Methodology - Energy Analysis (pJ/bit)

[ Energy Analysis }
\ y
[ Optical Loss ] Electrical Circuits

Receiver Sensitivity

AR et Nty :

\ : E

[Required Laser Power} ' FEC [ Transmitter ] { Receiver ]

' gain

[ Thermal Tuning Je [ Thermal Tuning ]e
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Goal: conduct link wide optimizations

» E.g. extinction ratio (optical signal quality) vs. voltage (power
consumption)

- For low number of wavelengths, largest resonance shift not required [1,2]
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: 0
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[1] R. Wu, et al. “Compact modeling and system implications of microring modulators in nanophotonic interconnects”, ACM SLIP 2315
[2] S. Rumley, et al. “PhoenixSim: Crosslayer Design and Modeling of Silicon Photonic Interconnects”, AISTECS workshop, 2016



Conclusions

* Ring resonator based interconnects as very complex systems
requiring fine tuning
— Point | was thinking to make at this workshop: mind the ring bandwidth!

— After making these slides: even more complex design space!
For every ring:
* Input gap, output gap, radius, (doping)
* Find the right BW (depends on the architecture, bit-rate), align the wavelength,
balance losses (also depends on the architecture), reach desired FSR...

- Constant power penalty based approach questionable
« Can be very conservative, or very optimistic, depending on the context
« Silicon photonics still lacks maturity
— Well defined compact models, PDKs need to be defined
* Previously proposed designs should be re-assessed against these definitions

— Large scale modeling/design methodologies building on these PDKs to be
developed

— The (current) impossibility to realize small rings is a big concern
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