

27 - 31 March, 2017 · STCC · Lausanne · Switzerland

The European Event for Electronic System Design & Test

Silicon Photonics Scalable Design Framework: From Design Concept to Physical Verification

Hossam Sarhan

Technical Marketing Engineer

hossam sarhan@mentor.com

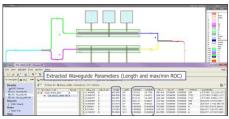
Objective: Scalable Photonics Design Infrastructure

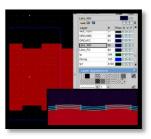
 The electronic IC market has benefitted greatly from the scalability attributed to Moore's Law

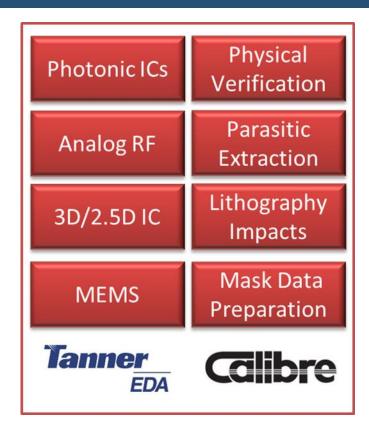
Meanwhile the photonic market remains limited to relatively

small circuits

 Design differentiation still focused on device physics as opposed to novel device and sub-circuit re-use.




What is Required to Move Forward?


- Scalable Design Tools
 - Large scale optical simulation based on compact models
 - Automated/semi-automated layout
 - Physical verification and DFM
- Dedicated Process Development Kits (PDKs)
 - Pre-characterized compact models
 - Pre-characterized device pcells
 - Process specific PV and DFM decks
 - Validated tool settings
- Reference Flows
 - Validated design flows
 - Device characterization procedures
 - Test and measurement methodologies
- Validated Re-Usable IP?

Partnering to provide IoT Solutions

Mentor's Custom IC Design Tools Joint support for Pyxis and Tanner EDA Products

- Both utilize common PDK development utilities
 - Supports Python based PCells
 - Supports OA based PDK development
- Both support interface to Mentors "enterprise level" simulation and verification tools
 - Full support for Calibre® Physical Verification tools
 - Full support for Eldo Platform with Verilog-A support
- Tanner EDA will be fully OA native this year
 - L-Edit is Open Access native
 - S-Edit will be Open Access native in 17.2 release

Mentor's Photonic IC Design Flow Calibre's Scalability with Tanner EDA platform

Native Open Access Design Environment

Design Capture

Tanner S-Edit

- Upcoming OA Native support in v17.2
- Photonic SDL support
- Supports Pre/Post-layout simulation

Layout Implementation

Tanner L-Edit

- Advanced Curves
- X-Section
- Photonic SDL Support

Luceda IPKISS

- · Photonic PCells
- Waveguide generation
- Layout direct simulation

Comprehensive Open Access PDK Support

- Luceda IPKISS PCells
- PyCell Studio PCells
- Future OA-API Plugins

Electrical Simulation

- Eldo Platform with Verilog-A support
- Tanner T-Spice with Verilog-A support

Photonic Simulation

- Luceda CAPHE Simulator
- Future Photonic Simulation plugins

Calibre RVE / Calibre Interactive

Lithography Simulation

Calibre LFD

Design Verification
Calibre nmLVS
PERC,
PERC LDL

Photonic DRC and Chip Finishing Calibre nmDRC, Calibre Yield

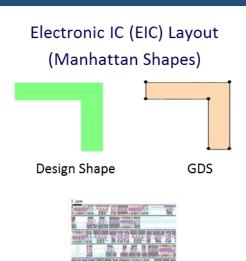
Calibre Verification Platform

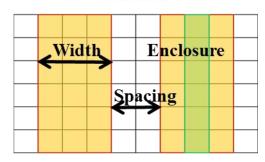
Mentor's Photonic IC Design Flow Customer Driven

Native Open Access Design Environment Layout Implementation Design Capture Comprehensive Open Access PDK Support Luceda IPKISS **Tanner S-Edit** Tanner L-Edit Photonic PCells **Luceda IPKISS PCells PyCell Studio PCells** Lavout direct Electrical **Photonic** Calibre RVE / Calibre Interactive Simulation **Simulation** Luceda CAPHE **Eldo Platform Photonic DRC and** Lithography **Design Verification Simulator Chip Finishing** Simulation Calibre nmLVS with Verilog-A PERC, Calibre nmDRC, support Calibre LFD PERC LDL Future Photonic Calibre Yield Tanner T-Spice Simulation with Verilog-A plugins support **Calibre Verification Platform**

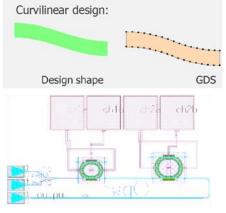
Physical Verification Challenges

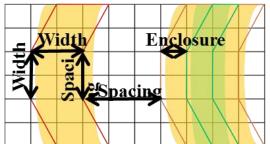
Rendered Curves Results in False DRC Errors

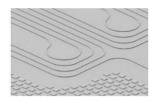

• Difficulty in LVS Device Recognition and Optical Property Comparison

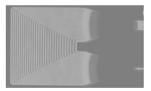

 Need to Pass Waveguide Interconnect Extraction to Post-Layout Simulation

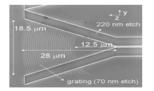
Mask Generation and Silicon Manufacture Varies from Design Intent


DRC FOR NON-MANHATTAN PHOTONIC DESIGNS

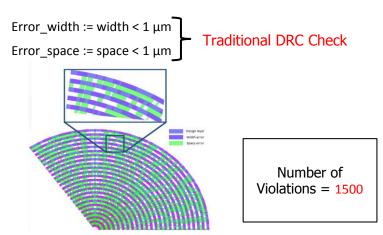

DRC on Si-Photonics Components




Photonic IC (PIC) Layout (Non-Manhattan Shapes)

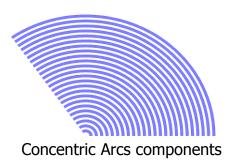


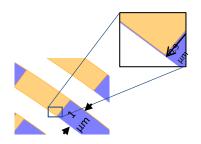
Same


SEM images, Europractice

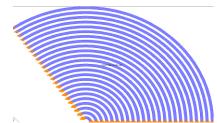
Hossam Sarhan / Mentor Graphics

I. False Error Induced by grid Snapping (1/2)


- Concentric arcs:
 - Fabrication constraint :


Width > 1
$$\mu$$
m, Space > 1 μ m

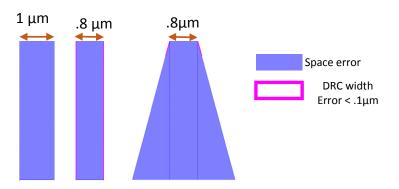
[&]quot;Silicon Photonics Design Rule Checking: Application of a Programmable Modeling Engine for Non-Manhattan Geometry Verification", presented at VLSI-SoC 2014


I. False Error Induced by grid Snapping (2/2)

- Concentric arcs:
 - Fabrication constraint :

All Thin rod := Width (rod) $< 1 \mu m$ W = Width (Thin rod width) α = Angle (Thin rod width) L = Length (thin rod width) If $(0 < \alpha < max \ angle)$ OR $(L < max \ length)$ Then: Error rod width := Width(rod) < $(1 - tol^*) \mu m$ Error rod width := Width(rod) < max width μm

*.tol tolerance determined by applying tolerance factor according to fabrication grids and DRC rounding factors. (2sart(2), Grid)


DRC Post Processing using EqDRC capabilities

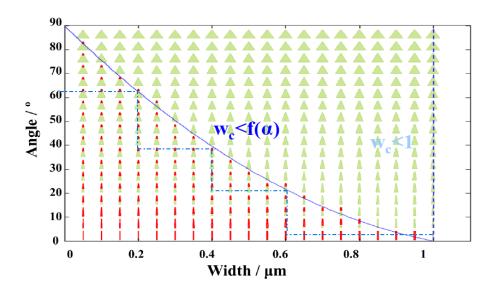
Concentric Arcs with DRC violations

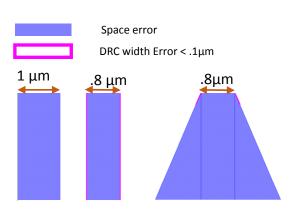
[&]quot;Silicon Photonics Design Rule Checking: Application of a Programmable Modeling Engine for Non-Manhattan Geometry Verification", presented at VLSI-SoC 2014

II. Enable Multi-Dimensional Check (1/2)

- Taper test structure
 - Taper is a trapezoidal shape.
 - End width (w) varies from .05 to 1 μm
 - Fabrication constraint :
 - Line width > 1 μ m
 - For Robust strip design: relaxed width constraint with increased angle

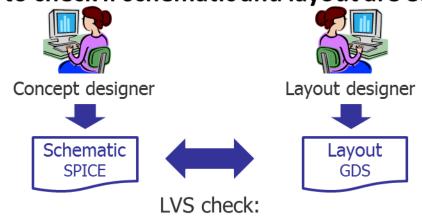
II. Enable Multi-Dimensional Check (2/2)


<u>Traditional DRC Rule (Complicated and non accurate)</u>


Error_Width_1 := width < w1 when $0 < \alpha < \alpha_1$ Error_Width_2 := width < w2 when $\alpha_1 < \alpha < \alpha_2$ Error_Width_3 := width < w3 when $\alpha_2 < \alpha < \alpha_3$

EqDRC Rule (Simple and Accurate)

 α = Angle (rod) $\alpha_{critical} = f(width(rod))$ Thin rod := $\alpha_c/\alpha > 1$



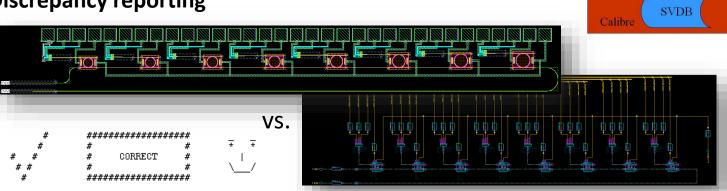
PHOTONIC LVS AND POST-LAYOUT SIMULATION

Photonic Layout versus Schematic (LVS) Check

- Why Needed?
 - Photonic designers are used to a "<u>Layout-centric</u>" design flow
 - But as more complex and larger scale designs emerge, IC design flow-like methodology is required – "Schematic/Layout" design flow

Are they equivalent?

LVS equivalent:


- Circuit topology –
 Device type and count, Connectivity
- Device topology

LVS Overview

• Ensures the schematic of the design is equivalent with the layout

Extraction Phase

- Connectivity extraction
- Device Extraction
- Parameter Extraction
- Comparison Phase
 - Extracted design VS. Source design
 - Property Tracing
 - Discrepancy reporting

Layou

LVS

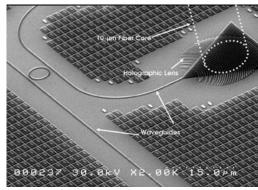
Deck

Source

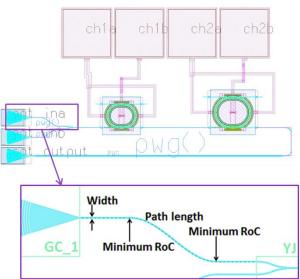
Extraction

SPICE

Netlist

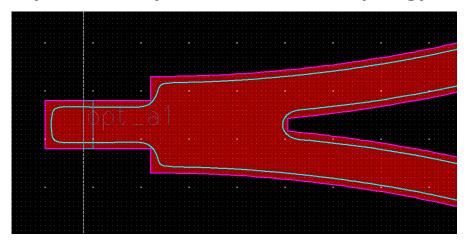

Comparison

What's New for Photonics LVS


- Wild design shape
 - Non-Manhattan or curvilinear

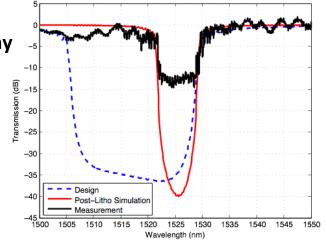
• Extraction and careful validation required on non-traditional geometrical parameters:

- Bend curvature
- · curvilinear path length
- Those properties can be context dependent



Luxtera

Litho Impacts on Silicon Photonics


- Optical Simulations Often do not Match Silicon Results
 - Litho simulation better captures 'as manufactured' structures
- Recommended Litho-Aware Device Characterization
 - Link to Lumerical Simulator improves device model parameters
 - Retargeting best practices to preserve intended topology

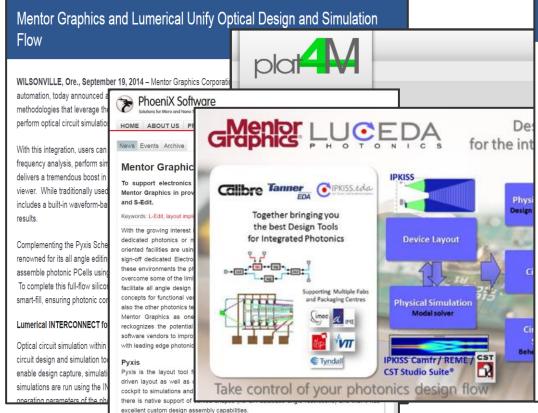
Lithography Simulation

Calibre LFD: Waveguide Bragg Grating Example

- Waveguide Bragg Grating Example
 - Ideal sharp edges of grating will smooth due to lithography resolution
 - This change in geometry will affect component attributes
- Modeled layout passed to simulation
- Litho Correction simulations match experimental Bragg bandwidth.

Xu Wang, et al., "Lithography Simulation for the Fabrication of Silicon Photonic Devices with Deep-Ultraviolet Lithography", IEEE GFP, 2012

Original


Litho Simulated

General Recommendations

- Need DRC decks dedicated for silicon photonics design
 - Cannot re-use decks targeted for IC design out of the box
 - Consider to add device shape-matching into DRC
- LVS checking for accuracy
 - Black-box devices for simple connectivity checking (shorts, opens)
 - Device shape matching (or push to DRC) for validation of pre-characterized device behavior
- Litho-simulation
 - Reduce mfg iterations through process modeling and simulation
 - Capture behavior impact through S-parameter update to optical simulation
 - Layout re-targeting or updated lithographic techniques to address outstanding issues

Growing Collaborations to provide "Full Scalable Si-Photonics Design Framework"

Mentor Graphics and Luceda Photonics Deliver a PDK for imec's Integrated Silicon Photonics Platform

WILSONVILLE, Ore., March 20, 2017 — Mentor Graphics® Corporation (NASDAQ: MENT) today announced, in collaboration with Luceda Photonics, the availability of a full flow process design kit (PDK) for imec's integrated Silicon Photonics Platform (iSiPP50G) to promote a 'right-the-first-time' approach to silicon photonics. The result is an exceptionally easy-to-use environment for integrated circuit (IC) design, simulation and layout with reliable, industry-standard physical verification for one of the industry's most advanced silicon photonics platform's available today.

The PDK supports the Tanner IC design suite along with Tanner Calibre® One for physical verification. Luceda's IPKISS.eda is integrated within Tanner's L-Edit full-custom layout tool providing drag-and-drop photonic components and fine-grained control over every aspect of the design flow. The imec process is suited to devices such as high-performance optical transceivers, optical sensing and read-out ICS and biomolecule detection.

The Tanner IC design suite supports analog, mixed-signal, RF, MEMS and silicon photonic design in one complete, highly integrated, end-to-end flow. Designers capture the schematic, perform analog and mixed-signal simulation, and lay out the physical design within this unified flow.

"Imeo's iSiPP50G process technology is a key platform for silicon photonics companies," said Greg Lebsack, general manager Tanner EDA at Mentor Graphics. "Delivering this PDK is significant for the market as it eliminates the manual, error-prone steps to establish a repeatable, efficient design flow. Now companies can get their innovative products to market more quickly and reliably using cost-effective tools and manufacturing."

IPKISS.eda inside L-Edit gives photonic IC designers full control of their design framework to ensure that what they fabricate matches exactly how they designed it. In addition, it enables the reuse and distribution of the design work in a hierarchical framework that saves time and improves reliability.

"Our customers ask for help automating the mechanics of design so they can use their skills and knowledge to deliver functionality, performance and quality," said Pieter Dumon, CTO, Luceda. "The qualification of this PDK together with integration of IPKISS.eda within the Mentor Tanner design flow delivers just that."

Graphics

www.mentor.com