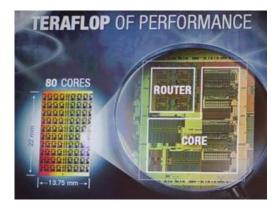
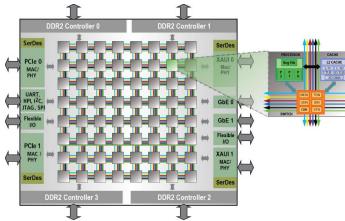


Temperature sensitivity analysis and power consumption optimization of optical networks-on-chip

Yaoyao Ye Shanghai Jiao Tong University, China


Outline

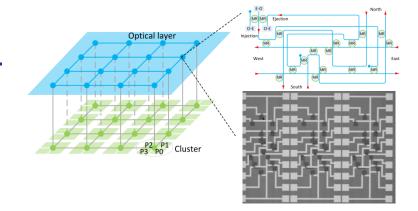
- Multiprocessor systems and optical network-onchip (NoC)
- OTemp: an optical thermal effect modeling platform
- Case study: a 3D torus-based optical NoC with thermal-sensitive routing
- Conclusions



Energy-efficient multiprocessor system

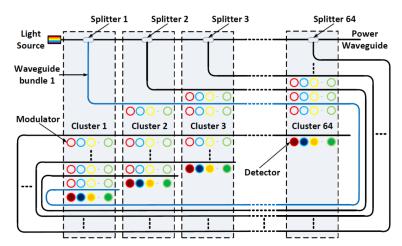
- Increasing number of processors
 - Intel Polaris chip (80-core)
 - ClearSpeed (96-core)
 - Tilera (100-core)
 - Picochip (300-core)
- Network-on-chip (NoC)
 - High throughput
 - Scalable
 - Reusable
- Limitations of electrical interconnect
 - Parasitic resistance and capacitance
 - Delay, large power dissipation

Intel's Polaris chip: 8x10 mesh



TILEPro64 processor: 8x8 mesh

Optical network-on-chip

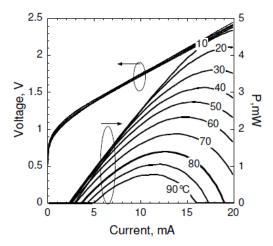

- Use optical interconnect for onchip communication
 - High bandwidth density
 - Low power consumption
 - Low latency

A hierarchical hybrid optical-electronic NoC [Mo, ISVLSI'10]

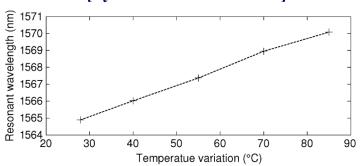
Challenges

- Thermo-optic effect
- On-chip temperature variations
- Counteract the power advantage of optical interconnect

Corona: 2 to 6 speedup and 83% power reduction [Vantrease ISCA'08]


Thermal sensitivity of photonic devices

Laser


- VCSEL wavelength shift 0.07-0.1nm/K [Syrbu OFC/NFOEC'08]
- power efficiency degradation

Microresonator

- wavelength shift 0.05-0.1nm/K
 [Padgaonkar'04]
- Thermal variations result in addition power loss

10Gbps 1550nm VCSEL [Syrbu OFC/NFOEC'08]

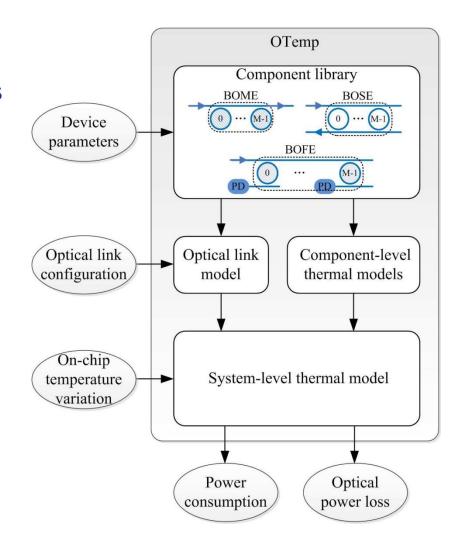
Measured thermal dependency of microresonator [Li TVLSI'10]

Related thermal management techniques

- Localized thermal-based adjustment
 - tuning range: tens of nm
 - power efficiency: 3.5mW/nm [F. Gan, Photon. Switch.'07]
- Electronic-based adjustment
 - tuning range: less than 1nm
 - power efficiency: 100µW/nm [Q. Xu, Optical Express'08]
- Run-time thermal management to avoid overheating
 - OS-based workload migration [Z. Li, TVLSI'10]
 - DVFS (dynamic voltage and frequency scaling)
 - unable to provide precise intra-core temperature control

Motivations

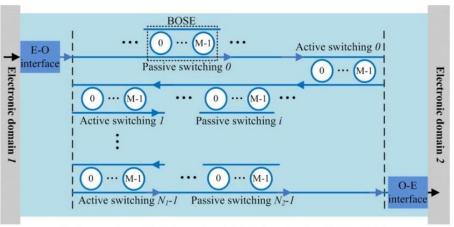
- How to analyze and model thermal effects in optical NoCs under temperature variations?
 - OTemp: an optical thermal effect modeling platform
- How to optimize power consumption of optical NoCs under temperature variations?
 - Low-temperature-dependence techniques
 - Thermal-sensitive routing

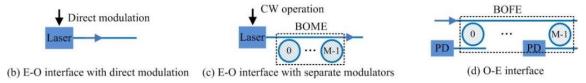

OTemp: an optical thermal effect modeling platform

Inputs

- on-chip temperature variations
- optical link configurations
- device parameters

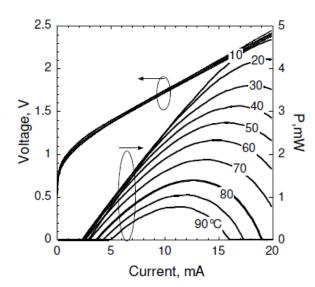
Outputs


- power consumption
- optical power loss
- For both WDM-based and single-wavelength based optical links



Optical link model

- Laser source
- Basic optical modulation element (BOME)
- Basic optical switching element (BOSE)
- Basic optical filter element (BOFE)
- Photodetector


(a) An overview of the M-wavelength WDM-based optical link in ONoCs

An M-wavelength WDM based optical link model

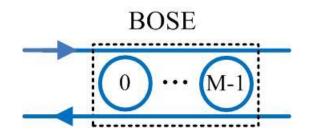
Thermal modeling of VCSEL laser

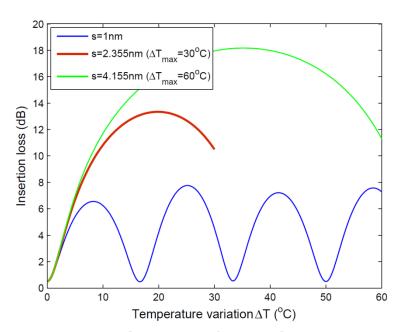
- Emission wavelength λ_{VCSEL} $l_{\text{VCSEL}} \cdot n_{\text{ave}} = m_{\text{VCSEL}} \cdot \lambda_{\text{VCSEL}}/2.$
- Temperature-dependent wavelength shift $\lambda_{VCSEL} = \lambda_{VCSEL_min} + \rho_{VCSEL}(T_{VCSEL} T_{min})$
- Output power under temperature T_{VCSEL} $P_{TX} = (I - \alpha - \beta (T_{VCSEL} - T_{th})^2)(\varepsilon - \gamma \cdot T_{VCSEL})$
- For on-chip laser source, T_{VCSEL} varies over the on-chip temperature range

10Gbps 1550nm VCSEL [Syrbu OFC/NFOEC'08]

Thermal modeling of BOSE

In active switching, the insertion loss a M-wavelength BOSE, L_{BOSE active} is:


$$f_n = r_n - \frac{t_n^i t_n^o}{r_n - f_{n-1}^{-1} exp(j2\theta_{n-1})}$$

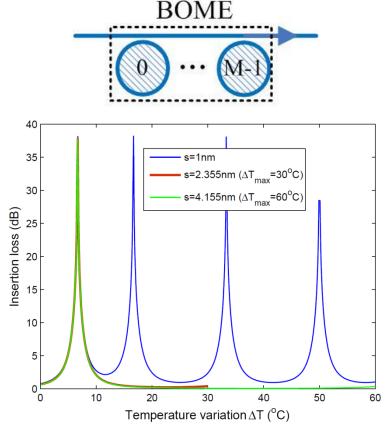

$$\omega_n = \frac{2\pi c}{\lambda_n + \rho_{MR} \cdot \Delta T}$$

$$r_n = \frac{2\kappa^2}{j2\tau(\omega - \omega_n) + (2\kappa^2 + \kappa_p^2)}$$

$$t_n^i = t_n^o = \frac{j2\tau(\omega - \omega_n) + \kappa_p^2}{j2\tau(\omega - \omega_n) + (2\kappa^2 + \kappa_p^2)}$$

$$L_{BOSE_active} = -10log|f_{M-1}|^2$$

Insertion loss of an active 8wavelength BOSE, Q=5000, s is the channel spacing


Thermal modeling of BOME

- Modulation is performed by switching the bias voltage
 - on resonance: modulate '0'
 - off resonance: modulate '1'
- BOME insertion loss to wavelength λ₀

$$L_{BOME_0} = \sum_{i=0}^{M-1} 10 log \frac{\left(\frac{i \cdot s - b + \rho_{MR} \cdot \Delta T}{\delta}\right)^2 + 1}{\left(\frac{i \cdot s - b + \rho_{MR} \cdot \Delta T}{\delta}\right)^2 + \left(\frac{\kappa^2 - \kappa_p^2}{\kappa^2 + \kappa_p^2}\right)^2}$$

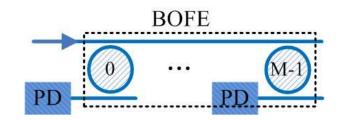
BOME insertion loss to wavelength λ_x

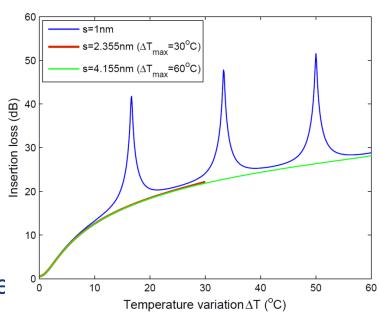
$$L_{BOME_x} = \sum_{i=0}^{M-x-1} 10log \frac{\left(\frac{i \cdot s - b + \rho_{MR} \cdot \Delta T}{\delta}\right)^2 + 1}{\left(\frac{i \cdot s - b + \rho_{MR} \cdot \Delta T}{\delta}\right)^2 + \left(\frac{\kappa^2 - \kappa_p^2}{\kappa^2 + \kappa_p^2}\right)^2} + \sum_{j=1}^{x} 10log \frac{\left(\frac{j \cdot s - \rho_{MR} \cdot \Delta T}{\delta}\right)^2 + 1}{\left(\frac{j \cdot s - \rho_{MR} \cdot \Delta T}{\delta}\right)^2 + \left(\frac{\kappa^2 - \kappa_p^2}{\kappa^2 + \kappa_p^2}\right)^2}$$

Insertion loss of an 8-wavelength BOME to λ_7 , Q=5000

Thermal modeling of BOFE

- Under temperature variation ΔT
- **BOFE** insertion loss to wavelength λ_0


$$L_{BOFE_0} = 10log((\frac{2\kappa^2 + \kappa_p^2}{2\kappa^2})^2 \cdot (\frac{(\rho_{MR}\Delta T)^2 + \delta^2}{\delta^2}))$$


BOFE insertion loss to wavelength λ_x

$$L_{BOFE_x} = 10log((\frac{2\kappa^2 + \kappa_p^2}{2\kappa^2})^2 \cdot (\frac{(\rho_{MR}\Delta T)^2 + \delta^2}{\delta^2}))$$

$$+ \sum_{i=0}^{x-1} 10log \frac{((x-i)\cdot s + \rho_{MR}\Delta T)^2 + \delta^2}{((x-i)\cdot s + \rho_{MR}\Delta T)^2 + \delta^2 \cdot (\frac{\kappa_p^2}{2\kappa^2 + \kappa_p^2})^2}$$

A larger channel spacing can reduce the insertion loss, but still as high as 20dB for ΔT=30°C

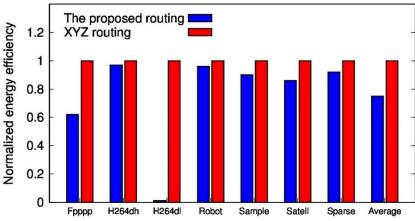
Insertion loss of an 8-wavelength BOFE to λ_7 , Q=5000

Link-level thermal model

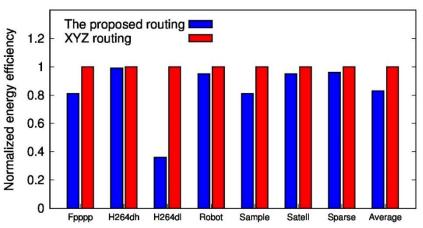
Optical power reaching the receiver must be no less than the receiver sensitivity

$$10log((I - \alpha - \beta(T_{VCSEL} - T_{th})^{2})(\varepsilon - \gamma \cdot T_{VCSEL})) - L_{BOME_x} - \sum_{i=0}^{N_{1}-1} L_{BOSE_active_k}$$
$$- \sum_{j=0}^{N_{2}-1} L_{BOSE_parking_j} - L_{BOFE_x} - L_{WG} \ge S_{RX}$$

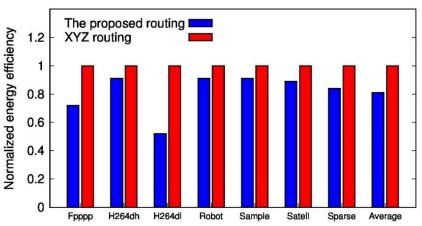
- More input power is needed by the transmitter to guarantee enough power reaching the receiver
- Thermal-based adjustment for BOSE, BOME, BOFE


Outline

- Multiprocessor systems and optical network-onchip (NoC)
- OTemp: an optical thermal effect modeling platform
- Case study: a 3D torus-based optical NoC with thermal-sensitive routing
- Conclusions



Case study: a 3D torus-based optical NoC with thermal-sensitive routing


- Compared with XYZ routing, thermal-sensitive routing reduces power consumption by:
- 25% if w/o thermal tuning
- 19% if with thermal tuning
- 17% if with athermal MRs

Normalized energy efficiency without thermal tuning

Normalized energy efficiency with athermal MRs

Normalized energy efficiency with thermal tuning

Conclusions

- Thermal sensitivity of silicon photonics is an intrinsic characteristic as well as a potential issue
- Our approach
 - An analytical thermal model for optical NoCs
 - Important factors regarding thermal-aware power efficiency
 - A thermal-sensitive routing to optimize the power consumption under temperature variations
- Help support the further development of optical NoCs for energy-efficient multiprocessor systems

Thank you!

