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Need For Interconnection

 Cache Coherence.
 Send the broadcast signals.

 Receive the responses from other caches.

 Barriers.
 Send the barrier status to each other.

 Cores need to communicate with other caches.
 Cache misses.

 Cache line migrations
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 Point to point Interconnection
• Number of wires required = N*(N-1)/2.
• Will be clumsy.

 NOC
• Logical point to point links through a 

network.
• Route packets in a network.
• Will reduce the number of electrical links.
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All figures reproduced from Haurylau et al. IEEE Journal of 

Quantum Elec.
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Optical DevicesOptical Devices

Power ReductionPower Reduction

ArchitectureArchitecture

ApplicationsApplications

Optical components and challenges 

in their operation and fabrication

Optical components and challenges 

in their operation and fabrication

Optical communication 

architectures, protocols, topology

Reducing static power consumption

Off-chip and on-chip applications



Basic Components of our Architecture

Optical Communication Framework

Photodetector

Driver Receiver

Modulator

Power Waveguide

Data Waveguide
Laser

Source

1. Fast DML Lasers

2. Tunable Array

3. Good thermal

stability

Comb Splitter

[Levy et al.]
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Optical Devices: OptiKit

Splitters : split the light Ring Resonator : filters light, 

switching and modulation.  Multimode Interference

Directional coupler

Y Junction

Limitation : Fixed split ratio

High power losses

Required : Tunable splitter

VLSI Design ‘14VLSI Design ‘14



Our Solution : Tunable splitter

 A tunable power splitter which can be tuned on demand.

 Idea : Allow ring resonator to work in partial resonant states.

 Change the refractive index of ring resonator.

 How : Thermo-optic and Electro-optic effects.

 Achieved tuning ranges from 0.4-1.8.

 Proposed an algorithm to compute the optimal 

split ratios [SiPhotonics ‘15].

 Currently working on wide tuning range splitter 

and broadband splitters.

Optics 

Communications ‘16

Optics 

Communications ‘16



Simple Approach for Extending the Split 

Ratio Range



The loss varies with the split ratio



Splitters in Series

 The loss is a function of the split ratio

 Proposed an O(N) time algorithm for computing the 
optimal split ratio

 Very fast implementation in hardware using lookup tables



Optimal Split Ratio for Trees

 O(N) time algorithm

 Takes 32 cycles (@2.5 GHz) for computing the optimal configuration
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Challenges

Fabrication Challenges Operational Challenges

Process 

variations

Design and integration Temperature

variation

Charge density

variation

Extend the Varius Toolkit for Optical Networks
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 Proposed hybrid topologies.

 Combined SWMR and MWMR topologies : ColdBus [HiPC ‘15].

 A multi-level architecture for a 1000 node system : BigBus[PACT ‘17].

 Proposed an optical architecture for a multi-chip design : NUPLet [ICCD ‘17]. 

Network Topology and Design : Our 

contribution 
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Protocols : Our contribution

Protocols

Arbitration

Using Tokens [HiPC '15].

Centralized (Currently working).

Routing

Point to point.

Bus based broadcast.

Wavelength Routing using resonators.



Power consumption and scalability

Static Power 

Consumption

Laser is turned 

on all the time

Laser Modulation

Channel SharingPhotonic 

Interconnect

Issues

Scalability

large 

waveguides, 

crossovers

Multi-Chip Design
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Our Solutions

Laser 

Modulation

Scalability

Predictive 

Approach

Channel 

Sharing

BigBus

NUPLet

An architecture for 1000 node system [HiPC '15].

An architecture for multi-chip system [ICCD ‘17].

Allow optical stations to share the power.

Arbitration mechanism is required.

Based on L1 misses [HiPC ‘15].

Based on network activity [OPTICS ‘16].
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Applications

Applications of 

optical

interconnects

Cache 

Coherence

Barriers

LLC access 

protocol

Virtual Chip

Optical Broadcasts

Optical tokens for shared cache lines

Broadcasting barrier signals over 

optical channels [VLSI ‘16]

Optical overlays depicting bank sets.

Broadcast in an overlay [ACM JETC’17].

Connecting various smaller chips.

Optical communication for inter chip messages



Optical NUCA (Non-uniform Cache)

 Traditional NUCA divides banks into bank sets because of wire 

delays. 

 Bank sets are arranged as columns.

 However, optical networks allow us to freely choose banks in 

the bank set.  Low latencies

 Each bank set is called an overlay.  virtual network
 Logic for creating overlays: homogenize the number of accesses

 Minimize contention

20
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NUPLet : NUCA over chiplet

 A Virtual Chip.

 Scalability : Separation of intra and inter chiplet networks, resulting in 

a scalable architecture for multi-chip designs. 

 Reduction in Inter Chiplet Messages : Implementation of a NUCA 

scheme.

 Power Consumption : A novel prediction mechanism to reduce power 

consumption of multi-chip networks. 
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NUPLet Architecture

23

Inter Chiplet

Optical 

Station(ICOS)

8 MWMR 

waveguides

Send to ICOS

Arbitrate for IPW

Power(IPWX) 

Send(MWMRX) 
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Conclusion

We divided the entire nanophotonics domain into four different layers.

We presented the issues at each layer.

We proposed various novel mechanisms to handle different issues.

Still some system level challenges remain.

Integrating thousands of optical components at the industrial level 

remains to be done.

Novel methods are required to handle fabrication and operational 

level challenges.

Static power consumption is still 3X more than the ideal power 

required.




