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Need For Interconnection

P
0 Cache Coherence.
o Send the broadcast signals.
o Receive the responses from other caches.
0 Barriers.
o Send the barrier status to each other.
0 Cores need to communicate with other caches.

o Cache misses.
o Cache line migrations



How to Connect these Cores on a Chip?

]
o Point to point Interconnection

Number of wires required = N*(N-1)/2.
Will be clumsy.
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N ———
o Point to point Interconnection

- Number of wires required = N*(N-1)/2.
- Will be clumsy.
o NOC
- Logical point to point links through a
network.

- Route packets in a network.
- Will reduce the number of electrical links.
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Why Optical?

L
0 For optical waveguides delay and power consumption do
not vary much with interconnection length.
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Why Optical?

L
0 For optical waveguides delay and power consumption do

not vary much with interconnection length.
o High Bandwidth due to WDM.



Why Optical?
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Why Optical?

L
0 For optical waveguides delay and power consumption do
not vary much with interconnection length.
o High Bandwidth due to WDM.

o Rapid advances in the field of on-chip photonics
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Why Optical?

L
0 For optical waveguides delay and power consumption do

not vary much with interconnection length.

o High Bandwidth due to WDM.
o Rapid advances in the field of on-chip photonics
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OUR OPTICAL STACK

Nanophotonics
domain

Applications

Power Reduction

Architecture

Off-chip and on-chip applications

Reducing static power consumption

Optical communication

architectures, protocols, topology

Optical Devices

Optical components and challenges
in their operation and fabrication




Basic Components of our Architecture
]

Optical Communication Framework

Power Waveguide
-:(ﬁ-*

Data Waveguide

Laser
Source Modula'ror _O_
Fast DML quers Comb Splitter

Tunable Array [Levy et al.]
Good thermal
stability

@
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Optical Devices: OptiKit ; g
| VLS| Design ‘14
Splitters : split the light

Multimode Interference

Ring Resonator : filters light,

switching and modulation.
Directional coupler

——

Y Junction

Limitation : Fixed split ratio
High power losses

Required : Tunable splitter

Z (um)
(=]




P
Our Solution : Tunable splitter O\

i1
Communications ‘16

O A tunable power splitter which can be tuned on demand.

) Idea : Allow ring resonator to work in partial resonant states.
L Change the refractive index of ring resonator.

 How : Thermo-optic and Electro-optic effects. e ﬁ: :r | 7:
L Achieved tuning ranges from 0.4-1.8. o I T T T T
O Proposed an algorithm to compute the optimal T s e SRR Tl
split ratios [SiPhotonics ‘15]. =3 N S Lo S I
O Currently working on wide tuning range splitter % tob o :+ _____ i _____ +: ______
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Simple Approach for Extending the Split

Ratio Range
]

In 7 Out1
Constructive
interference

(O Microring resonator

O Tunable Splitter




Loss(B) in percentage

10

Loss(%) v/s split ratio in asymmetrical splitters

0.6
Split ratio(A)

1.0

The loss varies with the split ratio




Splitters in Series
g

SWMR bus
AiBi

D7 y Zl splitter
f%} '% —|/V—'_¢ () station
(3 )ee(i J)ee(n-D(n)
(b)

0 The loss is a function of the split ratio

0 Proposed an O(N) time algorithm for computing the
optimal split ratio

0 Very fast implementation in hardware using lookup tables



Optimal Split Ratio for Trees

Splitter

Subtree of
(a) 8 nodes

0 O(N) time algorithm
0 Takes 32 cycles (@2.5 GHz) for computing the optimal configuration
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Challenges
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Fabrication Challenges Operational Challenges
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Process Design and integration Temperature Charge density

variations variation variation

Extend the Varius Toolkit for Optical Networks
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[ Combined SWMR and MWMR topologies : ColdBus [HiPC ’15].
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waveguide(SWMR)
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\ P-Cluster
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CB-Cluster

Station (set
of 4 cores)
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Network Topology and Design : Our

contribution
T

1 Proposed hybrid topologies.
[ Combined SWMR and MWMR topologies : ColdBus [HiPC ‘15].

O A multi-level architecture for a 1000 node system : BigBus[PACT ‘17].
U Proposed an optical architecture for a multi-chip design : NUPLet [ICCD ‘17].
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Protoc
|

Protocols —

ols : Our contribution

Using Tokens [HiPC '15].

—  Arbitration

Centralized (Currently working).

— Point to point.

—— Routing —— Bus based broadcast.

— Wavelength Routing using resonators.




Power consumption and scalability

]
Static Power
Consumption

Laser is turned

—

[ Laser Modulation

Photonic Channel Sharing

Interconnect

on all the time

Issues

[ Scalability } [ Multi-Chip Design

large

waveguides,
crossovers
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Our Solutions

]
Based on L1 misses [HiPC ‘15].
Laser Predictive
Modulation Approach

Based on network activity [OPTICS ‘16].

Channel Allow optical stations to share the power.
Sharing Arbitration mechanism is required.

An architecture for 1000 node system [HiPC '15].
NUPLet B An architecture for multi-chip system [ICCD ‘17].

Scalability
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Applications

Applications of
optical
inferconnects

/

Cache
Coherence

Barriers

LLC access

protocol

Virtual Chip

Optical Broadcasts
Optical tokens for shared cache lines

Broadcasting barrier signals over
optical channels [VLSI ‘16]

Optical overlays depicting bank sets.
Broadcast in an overlay [ACM JETC 17].

Connecting various smaller chips.
Optical communication for inter chip messages




Optical NUCA (Non-uniform Cache)

a Traditional NUCA divides banks into bank sets because of wire
delays.

o Bank sets are arranged as columns.

o However, optical networks allow us to freely choose banks in
the bank set. 2 Low latencies

o Each bank set is called an overlay. = virtual network
0 Logic for creating overlays: homogenize the number of accesses
0 Minimize contention

20



. HiPC ‘14, ICCD '17,
Overlay Formation ACM JETC 17

- High Access Banks
- Low Access Banks

Hybrid
overlay

overlay
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Search in hybrid overlay
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. HiPC ‘14, ICCD '17,
Overlay Formation ACM JETC 17




NUPLet : NUCA over chiplet

-5
0 A Virtual Chip.

0 Scalability : Separation of intra and inter chiplet networks, resulting in
a scalable architecture for multi-chip designs.

0 Reduction in Inter Chiplet Messages : Implementation of a NUCA
scheme.

0 Power Consumption : A novel prediction mechanism to reduce power
consumption of multi-chip networks.
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Conclusion
I

JWe divided the entire nanophotonics domain into four different layers.

JWe presented the issues at each layer.

JWe proposed various novel mechanisms to handle different issues.

[ Still some system level challenges remain.

integrating thousands of optical components at the industrial level
remains to be done.

(dNovel methods are required to handle fabrication and operational
level challenges.

 Static power consumption is still 3X more than the ideal power
required.






