

DESIGN, AUTOMATION & TEST IN EUROPE

19 - 23 March, 2018 · ICC · Dresden · Germany The European Event for Electronic System Design & Test **OPTICS**

Optimal Pairing and Non-Uniform Channel Alignment of Microringbased Transceivers for Comb Laser-Driven DWDM Silicon Photonics

Yuyang Wang¹, M. Ashkan Seyedi², Rui Wu¹, Jared Hulme², Marco Fiorentino², Raymond G. Beausoleil², and Kwang-Ting Cheng³

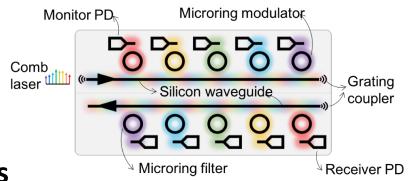
¹Department of Electrical & Computer Engineering, University of California, Santa Barbara, CA, U.S.A.

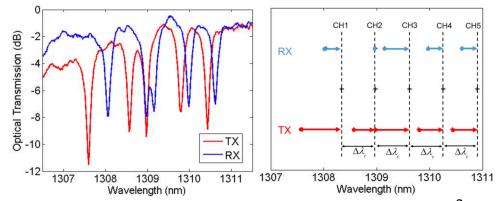
²Hewlett Packard Labs, Hewlett Packard Enterprise, Palo Alto, CA, U.S.A.

³School of Engineering, Hong Kong University of Science and Technology, Hong Kong

Outline

- Background
- Device Measurement and Variation Modeling
- Technique #1: Transceiver Optimal Pairing
- Technique #2: Non-uniform Channel Alignment
- Conclusion


Background: Microring-based DWDM


Microring-based optical DWDM

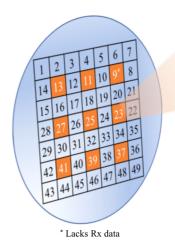
- Compact footprint of microrings
- (De)multiplexer-free implementation

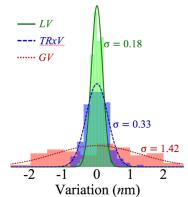
Microring Resonance Wavelengths

- Sensitive to process variations
- Require active tuning
- Take non-trivial tuning power

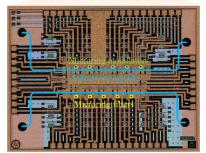
Measurement and Variation Modeling

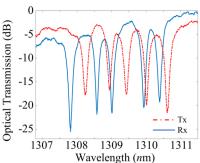
Nine locations measured


- 40 TRx with 80 GHz spacing
- 31 TRx with 160 GHz spacing

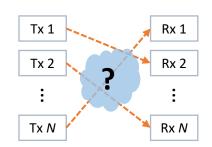

Variation modeling for resonance wavelengths:

- Inter-transceiver global variation (GV)
- Intra-transceiver local variation (LV)
- Tx–Rx wavelength offset (TRxV)


$$\lambda_{TX}\left(i,j\right) = \frac{c}{\left(c/\lambda_{0} - \left(j-1\right)\Delta f\right)} + GV_{i} + LV_{j}$$


$$\lambda_{RX}\left(i,j'\right) = \underbrace{\frac{c}{\left(c/\lambda_{0} - \left(j'-1\right)\Delta f\right)}}_{\text{Design value}} + \underbrace{GV_{i} + LV_{j'} + TRxV_{i}}_{\text{Variation components}}$$

80 GHz	80 GHz	80 GHz
160 GHz	160 GHz	160 GHz
80 GHz	80 GHz	160 GHz

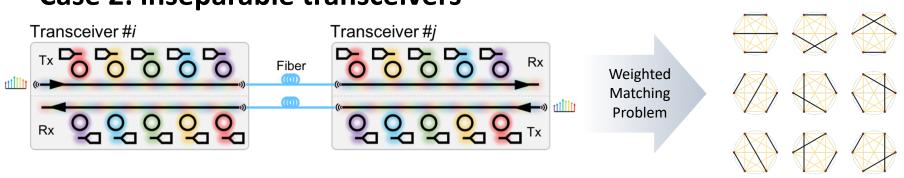


Motivation: Tuning Power Reduction

- Existing solutions to tuning power mitigation target on individual transceivers.
- In the presence of multiple devices, different Tx Rx pairing results in different tuning power.
- Optimal pairing exists which minimize the average tuning power.

• Technique #1: Transceiver Optimal Pairing

Transceiver Optimal Pairing: Problem Formulation


Case 1: separable transceivers

Tasks

Agents

Case 2: inseparable transceivers

Optimal Pairing: Separable Transceiver

Optimal assignment of Tx and Rx

- Cost matrix construction (O(N²))
- Solve by Hungarian Algorithm $(O(N^3))$

Evaluation on measurement data

Channel Spacing	Avg. Tuning	Power	
	Local Assignment	Optimal Assignment	Saving (%)
80 GHz	25.7	24.1	6.2
160 GHz	24.7	21.3	13.8

Evaluation on Synthetic data

Channel Spacing	# of Tx and Rx	Power Saving (%)	Exe. Time (s)
80 GHz	40	11.2	0.02
80 GHz	400	23.2	2.6
80 GHz	1000	25.8	26.8
80 GHz	1500	26.6	89.5
160 GHz	31	14.4	0.01
160 GHz	301	27.1	1.4
160 GHz	1001	29.8	28.3
160 GHz	1501	30.6	94.0

^{*}Assuming 0.15 nm/mW tuning efficiency

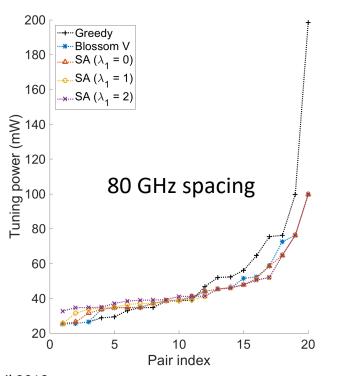
Optimal Pairing: Inseparable Transceiver

Minimum-weight matching of TRx

- Even # of TRx: perfect matching
- Odd # of TRx: maximal matching
- O(N!!) solution space where N!! = N(N-2)(N-4)...

Blossom V Algorithm*

- Solves min-weight perfect matching in $O(V^2E) = O(N^4)$
- Does not apply to min-weight maximal matching


Our simulated annealing-based algorithm

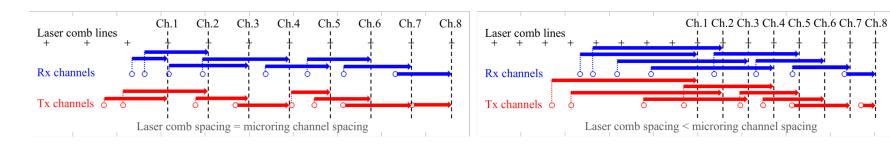
• Cost function: $E = \mu(\vec{A}) + \lambda \cdot \sigma(\vec{A})$

 $\lambda = 0$: only optimize for avg. tuning cost; $\lambda > 0$: optimize for avg. tuning cost **and** tuning cost uniformity.

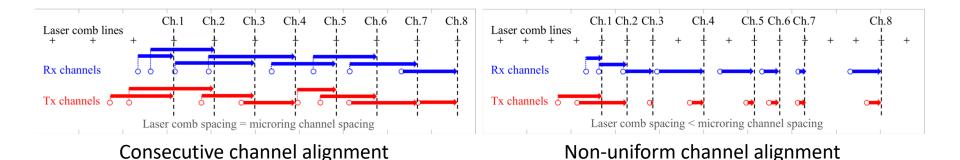
Optimal Pairing: Inseparable Transceiver (cont.)

Evaluation on measurement data*

Optimal Pairing: Inseparable Transceiver (cont.)


• Evaluation on synthetic data

Channel Spacing	# of TRx	Power Saving (%)	Std. Reduction (%)	Exe. Time (s)
80 GHz	40	66.1	81.7	0.44
80 GHz	400	72.7	90.3	4.24
80 GHz	1000	75.4	77.1	18.25
80 GHz	1500	77.1	83.8	42.89
160 GHz	31	60.8	78.8	0.37
160 GHz	301	66.3	87.1	2.99
160 GHz	1001	72.9	84.0	18.27
160 GHz	1501	73.5	80.7	42.97

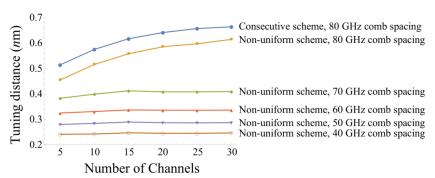

1 April 2018

Motivation: System Energy Efficiency

- Previous technique only considered microring tuning power
- Laser comb spacing usually assumed equal to microring channel spacing
 - Consecutive comb lines can be used
 - Maximum spectrum efficiency
- Is the assumption mandatory?

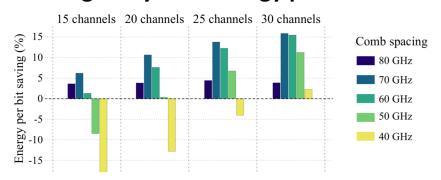
Tuning Power/Laser Power Trade-off

- Technique #2: non-uniform channel alignment
 - Add laser comb spacing into design space


Consecutive channel alignment

- Align each microring channel to the next available comb line
- Explore tuning/laser power trade-off for best overall energy efficiency

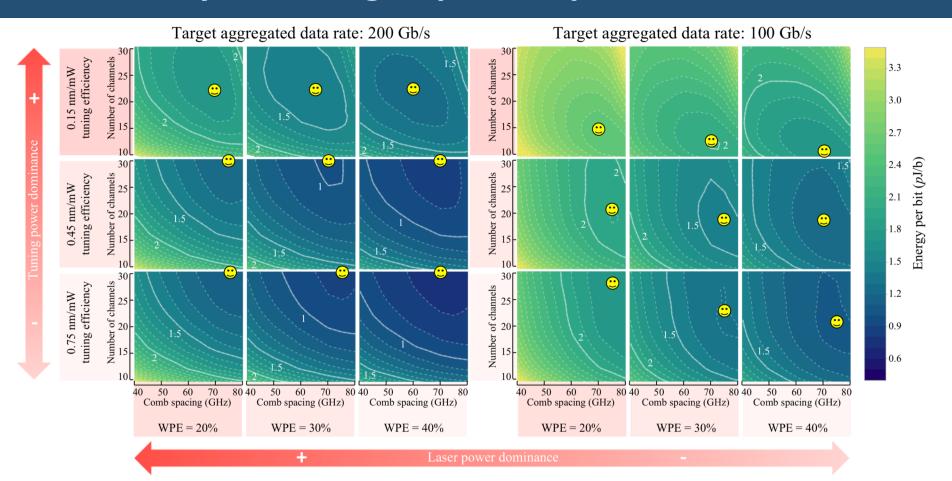
12 1 April 2018


Non-uniform Channel Alignment

Average tuning distance per microring¹

- Always reduces the average tuning distance compared to the consecutive scheme.
- Eliminates the channel count dependency of the tuning distance with denser comb lines.

Saving on system energy per bit^{1,2,3}


- For larger channel counts, denser comb lines can be used without compromising the overall energy efficiency.
- The biggest energy per bit saving does not require aggressively dense comb lines.

¹Based on synthetic wavelengths of transceivers with 80 GHz channel spacing.

²Power penalty models of the transceiver link taken from M. Bahadori et al., 2017 and Polster et al., 2017.

³10 Gbps per channel data rate, 0.15 nm/mW tuning efficiency and 20% laser WPE assumed.

Case Study for Design Space Exploration

Conclusion

Transceiver Optimal Pairing

- Formulated the TRx pairing of as assignment and matching problems.
- Optimization algorithms on either case for tuning power minimization.
- Can be applied on top of any previously proposed techniques which target on individual transceivers.

Non-uniform Channel Alignment

- Significantly reduce the microring tuning power.
- Improve overall energy efficiency despite some overhead in laser power.
- Expand the design space by one additional dimension.
- Provide guidelines on energy-efficient design of future DWDM silicon photonic transceivers.