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Extending silicon technology

Three pillars for Si technology

Materials

In the 1980s. the typical semiconductor used only a fraction of the primary elements.
Today, six times as many elements are used - more than half of the periodic table.
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Packaging

FROM DIPs TO SiPs:
AN EVOLUTION OF SEMICONDUCTOR PACKAGING
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THE FUTURE?

THAT'S NO CHIP...
THAT'S AN INTEGRATED SYSTEM!

The demands of next-generation electronics are making
packaging more important—and more complex—than
ever before. SEMI members are innovating advances in
packaging technology to make the package integral to
the design and function of products they power.

Www.semi.org
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Extending silicon technology

Experiment: “Human Brain vs. Computer”

Task 1: Mathematics Task 2: Image recognition
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Traditional silicon scaling ended Explore new functionalities, More than Moore
New types of problems gain interest Explore new computing paradigms
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Extending silicon technology

Outline

= Facilitate traditional scaling - Optical interconnects
— CMOS Silicon Photonics
* Pockels modulators, integrating BaTiO,

= New computing paradigms — Neuromorphic computing
— Dedicated hardware for neural networks
* Photonic Synaptic Processor

= Conclusions
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Extending silicon technology

Integrated silicon photonics: modulators
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Extending silicon technology

Barium titanate on silicon

» Molecular beam epitaxy (MBE) or other (PVD, PLD, CVD)

= BaTiO, deposition on SrTiO4 / Si templates
— Tetragonal crystal structure
—Thickness dependant polarization

= Availability on 200mm
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Extending silicon technology

BaTiO3 integration

= Back-end-of-line integration
— Direct epitaxy not possible on interlayer dielectric

= Transfer by wafer bonding

— Back-end-of-line compatible
— Thermal budget <400°C

BTO
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Eltes et al., IEDM, 2017
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Extending silicon technology

Active devices : DC characterization

= Voltage induced phase shift

= Very low DC power
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Extending silicon technology

Impact on FEOL components

* No degradation of Ge photo diodes

PIC + BTO
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Extending silicon technology

Benchmark

Principle Carrier modulation Pockels
Structure P-N MOS EAM

Material Sit Si? Ge3 BTO®
V_L [V-cm] 0.2 - 0.3
V_La [V-dB] 1.7
BW [GHZ] 40 - >50 2/20
Integration -

Phase modulation .

only

Pursuing applications in

* High-speed modulators

» Ultra-low optical device tuning (pW)

» Cryogenic eo modulators for optical interfacing to quantum computers
* Non-volatile optical weights in photonic neuromorphic systems

1pPatel, Opt. Exp. 2015 2Webster, OFC, 2015 3Srinivasan, JLT, 2016 ¢Eltes, IEDM, 2017
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Extending silicon technology

Outline

= New computing paradigms — Neuromorphic computing
— Dedicated hardware for neural networks
« Resistive Synaptic Processor
* Photonic Synaptic Processor

= Conclusions
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Extending silicon technology

Neuromorphic Computing
Brin at neural network level Complex model of brain-like neural network
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. Input neurons
. Hidden neurons

. Output nodes

¢ Synaptic weights

connection
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i e e et e felcull T his brain model is too complex to be fully and precisely modelled
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Breakthrough in implementation and applicability
of neuromorphic computing came with the concept
of using simplified Artificial Neural Networks (ANNSs)
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Extending silicon technology

Brain inspired computing:

Brain-like Neural network:

. Input neurons
. Hidden neurons

. Output nodes

< Synaptic weights

Deep Artificial Neural Network:

| Information processing flow >
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= Omni-directional signal flow
= A-synchronous pulse signals
= Information encoded in signal timing

=>» Difficult to implement efficiently on

standard computer hardware
13

= Feed-forward sequential processing

= Information encoded in signal amplitude

= Neuron activation: Accumulate + Threshold
= Training: Backpropagation Algorithm
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Extending silicon technology

Training: Backpropagation algorithm

Neural net as chain of vector operations:
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Backpropagation algorithm:

For many training cases x with target response t:

Forward Propagate:
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Determine output error:
o -o(E)

Backward Propagate: Determine neuron input
influence § on error E:

-0~ ©

5, 5y

Adjust the active weights, proportional to their
influence on the error: AW = —n x®06

AW, AW, AW,
X1~ 61 Xz 0y X3 03
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Extending silicon technology

Efficient training of Deep Artificial Neural Networks:
Training by Backpropagation Method:

" Processing dominated by many large matrix operations
— Forward Propagation: W, ;.

—Backward Propagation: Wy, Scale oc N2 AN

— Weight Update: AWi 5. ™ Neurons/layer \V'{,;“ﬁ}‘\yg‘\\‘,
NN
Ny Yautie A’)u;

= |nefficient on standard Von Neumann systems:
— (Mostly) Serial processing
— Low computation to 10 ratio 2 Memory

bottleneck E: u /

For fast and efficient neural network data processing:

= Fully parallel processing
= Tight integration of processing and memory = Crossbar arrays \
Anal ional : e Electrical X
= Analog signal processin :
& slghal p 8 — + Optical
L) G. W. Burr et al., “Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 2016—Febru, no. 408, p. 4.4.1-4.4.4, 2016.
T

] T. Gokmen and Y. Vlasov, Front. Neurosci., vol. 10, no. JUL, pp. 1-13, 2016.
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Extending silicon technology

Analog crossbar arrays:

Electrical crossbar array:

Voltage V,
Voltage V,
Voltage V)
Synaptic Tunable
weight resistance

= Weight update: proportional to signals
on row and column
— Symmetric increase and decrease
of weight
— ~1000 analog levels required

= Physical challenge: Identify material
systems that meet these requirements
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Extending silicon technology

Photonic crossbar unit - operating principle
Electrical crossbar

5) Forward propagation
Backward propagation
1 1 1 Weights
- i o - T
X — = WS X —
— -

Electrical wires
« Local weights
* Resistance tuning

Photonic crossbar
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Planar waveguiding
Distributed weights
Refractive index tuning

Writable photorefractive gratings provide the same functionality
as the tunable resistive elements in a crossbar unit
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Extending silicon technology

Optical crossbar arrays: Holographic storage and signal processing

Weight Storage:

Interference pattern: Photorefractive effect:

:

~ : Optical intensity

Stored diffraction grating:
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(1 Cornelia Denz, Optical Neural Networks, 1998.
Synaptic weights are stored as refractive index gratings in a photorefractive material:
= Grating are written by two interfering optical beams
= Photorefractive effect: Optically active electron traps + Pockels effect = refractive index grating

= Linear and symmetric process
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Extending silicon technology

Optical crossbar arrays: Integrated Solution

Concept demonstrated in bulk optics Our approach: Miniaturize using Integrated Optics
= Backpropagation training of neural networks with - Ele.c.tro—optlc cor\ver5|.on and beam shaping optics on
hidden layers a silicon photonics chip
= Large setup, slow electro-optics, stability issues * Memory: Photorefractive thin film on silicon
Laser Diode-Based 'Laser
Optical Neural Network in — s \’ :
(2' x 2' Optical Breadboard) Transmitter Photorqfractlve

Electrical array Interaction
Input | region

¥i

array

Transmitter

Electrical
.| Output

Collimating
mirror

3 Yuri Owechko and Bernard H. Soffer, "Holographic neurocomputer
utilizing laser diode light source®, 1995
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Extending silicon technology

Photonic weight processing unit: Building blocks

Photorefractive

Transmitter .
Interaction

array

region

Laser
Photorefractive interaction region: in
. . . . . Electrical
= Stores synaptic weights as refractive index gratings Input |
= Photorefractive material: Semi-Insulating GaAs
— Matches Si-Photonics wavelength range
— Compatible with IlI-V on Silicon processes
Two-wave mixing in bulk GaAs crystal = single synapse:
Mirror Detection 0.66 M_..MT- 1.0
‘ 0644
Signal 108
Polarizer S 062+
s, E
g 0.60 4 / 0.6 §
Polarizer .c_é 0581 BIaS / 0.4.;-
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Incident ‘ 0.54 4 0.2
light Wi Detection Up Down L Up Down
0.52 ; : ¢ : 0.0
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Time [s]
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To be confirmed in thin film
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Extending silicon technology

Photonic weight processing unit: Building blocks
Sio,

Electrical

Integration of the photorefractive layer: contacts 4” Si Photonics wafer

= Bonding technology as demonstrated
for other IllI-V on Si projects:
— Gain layers for integrated light
sources

= Oxide bonding to Silicon-photonics
stack

Bonded III-V layer sta

L) M. Seifried et al., "Monolithically Integrated CMOS-Compatible IlI-V on Silicon Lasers” doi: 10.1109/JSTQE.2018.2832654.

= Vertical directional coupling for efficient coupling of light Vertical directional coupling

between Si-photonic and GaAs layers .. o (eV,/m)
30

W 25

Areas of vertical
directional coupling
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Extending silicon technology

Summary

= Silicon technology remains the basis for computing devices
— Leverage existing processes, infrastructure and know-how
— Continuous extending of materials and function

= Silicon Photonics is currently becoming a major driver for employing optical interconnects
— Intra- and inter-datacenter communication
— Integration is functions is a must for cost and assembly reasons

= New computing paradigms — Neuromorphic computing - provides a path to handle unstructured data
— Analog signal processing in crossbar arrays
— Parallel processing of key algorithms in neural networks
— Electrical and optical implementations
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Extending silicon technology
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