

3 µm and 12 µm SOI platforms for optical interconnects and I/O coupling

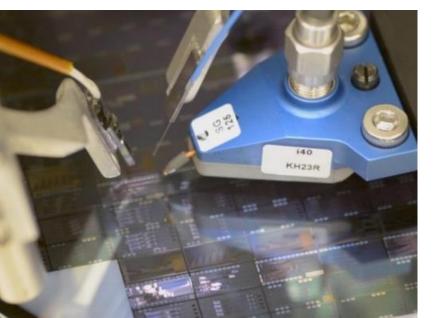
Timo AaltoResearch Team Leader
VTT Technical Research Centre of Finland

The 5th International Workshop on Optical/Photonic Interconnects for Computing Systems

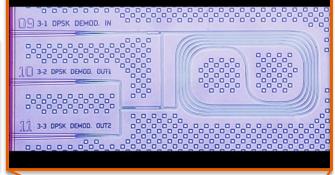
Florence, Italy, 29th March 2019

Other contributors and projects

- VTT: Matteo Cherchi, Mikko Harjanne, Fei Sun, Tapani Vehmas, Srivathsa Bhat, Markku Kapulainen, Giovanni Delrosso, Ari Hokkanen, Tomi Hassinen, Lauri Lehtimäki, Mikko Karppinen, Jyrki Ollila, Noora Heinilehto, Pentti Karioja
- Tampere University: Mircea Guina, Jukka Viheriälä
- Hamburg University of Technology:
 - Dirk Jalas, Nabeel Hakemi, Alexander Petrov, Manfred Eich
- Vertilas Gmbh: Christian Neumeyr
- Tyndall National Institute: Frank Peters, Robert Sheehan
- Scuola Superiore Sant'Anna: Antonio Malacarne

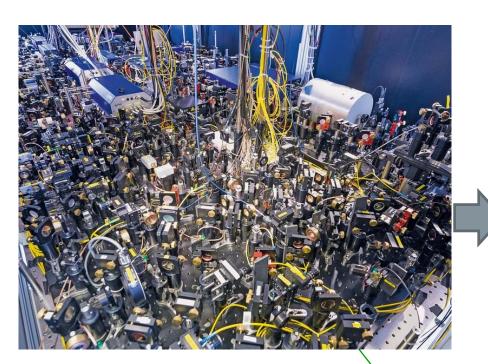



What is silicon photonics?


Generating, manipulating, guiding and using light

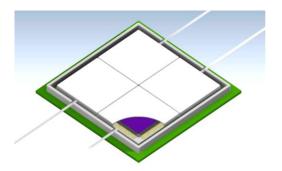
In Photonic Integrated Circuits (PICs)

processed on silicon-on-insulator (SOI) wafers

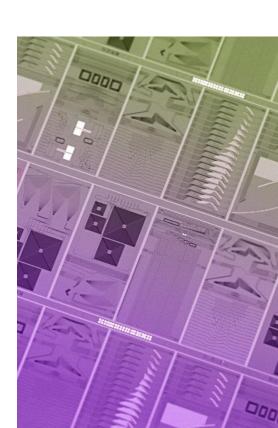


Photonics integration – Why?

Discrete components don't scale up well into complicated systems

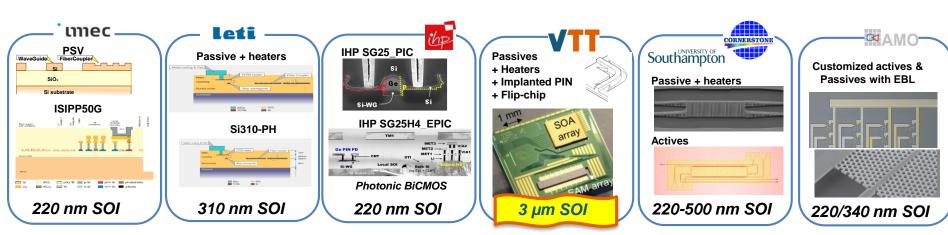


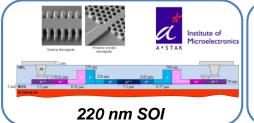

```
# endregion I/O ports
nline = n_vcsel_in.offset(0.0.-90).trim_to(nw).flip()
straight(dev, "WG_RIBS_ADD", nline, nline.trim_to(ne), 25.0)
# region mode-strippers
n_fiber_ins = [taper_wg(dev, INPUT_WG, node, RWG_2000) for node in n_fiber_ins]
n_fiber_ins = [straight_wg(dev, node.wg_def, node, node.trim_to(nw).offset(-850.0)) for no
n_fiber_ins = [taper_wg(dev, node.wg_def, node, RWG_2500) for node in n_fiber_ins]
n_fiber_ins = [rib_strip_wg(dev, node.wg_def, WG_2500, node) for node in n_fiber_ins]
# endregion mode-strippers
# region alignment waveguides
nar = n_fiber_ins[0]
nal = n_fiber_ins[3]
nar = line_wg(dev, nar.wg_def, nar, 200.0)
nal = line_wg(dev, nal.wg_def, nal, 200.0)
[nar, nal] = [taper_wg(dev, node.wg_def, node, WG_1875) for node in [nar, nal]]
nal = euler_wg(dev, nal.wg_def, nal, R_EULER_1310_L, 90)
nar = euler wg(dev, nar.wg def, nar, R EULER 1310 L, -90)
namid = nal.offset(abs(nal - nal.trim_to(nar)) / 2.0'
nodes = mmi_2x2_wg(dev, WG_3000, config.strip
node = taper_wg(dev, WG_3000, nodes[0], WG_18
straight_wg(dev, WG_1875, nal, node.flip())
node = taper_wg(dev, WG_3000, nodes[2], WG_1875)
straight_wg(dev, WG_1875, nar, node.flip())
nal = taper_wg(dev, WG_3000, nodes[1], WG_1875)
nar = taper_wg(dev, WG_3000, nodes[3], WG_1875)
nal = euler_wg(dev, nar.wg_def, nal, R_EULER_1310_L, 90)
nar = euler_wg(dev, nal.wg_def, nar, R_EULER_1310_L, -90)
[nar, nal] = [taper_wg(dev, node.wg_def, node, WG_2500) for
[nar, nal] = [strip rib wg(dev, node.wg def, RWG 2500, node)
                                                                          (mar, nal]]
```

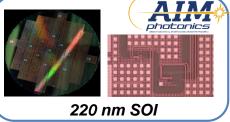


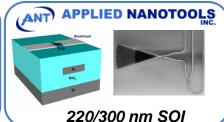
Benefits of photonic integrated circuits

- Smaller size
- Smaller weight
- Smaller power consumption
- Smaller cost (in volume manufacturing)
- Better optical performance
 - Lower coupling losses
 - Higher bandwidth

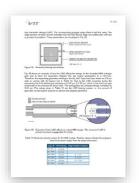






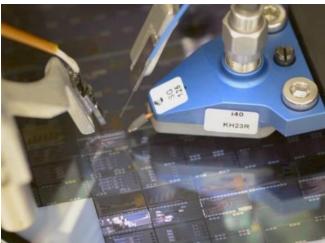


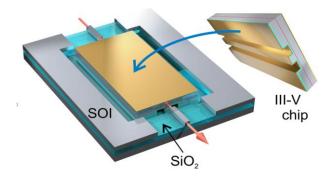
Many open access Si photonics platforms

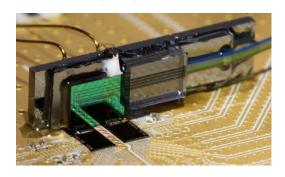


Micronova clean room facility: From R&D to production

- Clean room 2 600 m², class 10-100-1000
- 150 \rightarrow 200 mm wafer size upgrade by 2021
- Stepper lithography (i-line) & e-beam lithography
- Automated wafer-level O/E testing
- Multi-project wafer (MPW) runs and dedicated runs
- Process design kits (PDKs)
- Small/medium volume contract manufacturing via VTT Memsfab for 1–1000 SOI wafers/year



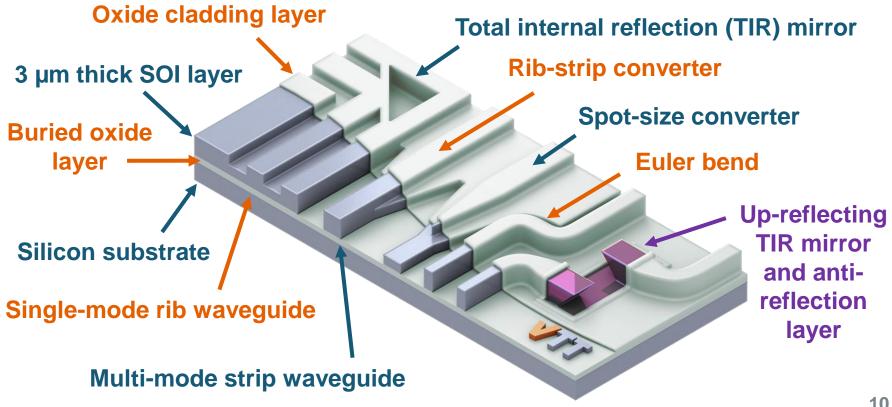



Remaining barriers for using Si photonics

- High scattering losses, strong polarization dependency and limited optical power in <1 µm thick waveguides
- Low bandwidth in >1 µm thick waveguides
- Lack of monolithic light sources on silicon
- Lack of monolithic isolators and circulators

H. Tuorila et al., Appl. Phys. Lett. 113, 041104 (2018)

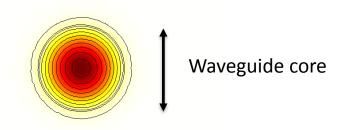
Hybrid laser assembly



Unique aspects of micron-size SOI waveguides:

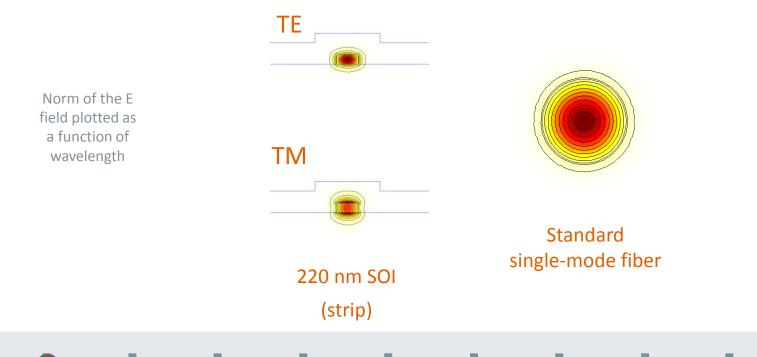
- Dense integration
- Low scattering losses
- Polarization independency
- Wavelength independency

Illustration of the 3 µm SOI platform



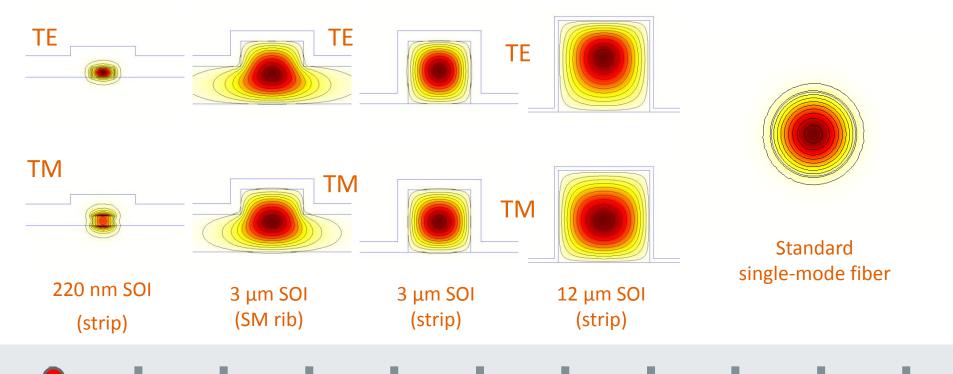
Wavelength dependency of a SMF-28 fiber

Norm of the E field plotted as a function of wavelength



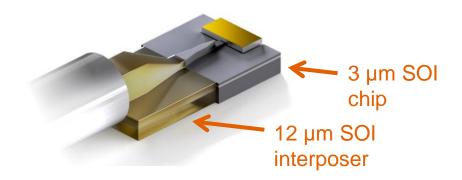
Standard single-mode fiber

VTT

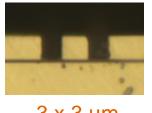

220 nm SOI waveguides have even more narrow wavelength range and high polarization dependency

1.2 μm 1.5 μm 1.8 μm 2.1 μm 2.4 μm 2.7 μm 3.0 μm 3.3 μm 3.6 μm 3.9 μm 4.2 μ

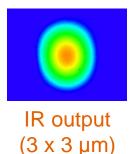
Micron-size SOI waveguides have ultra-wide wavelength range for both TE & TM

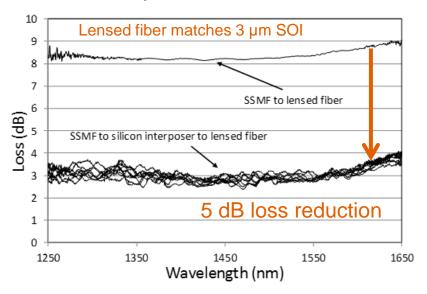


1.2 μm 1.5 μm 1.8 μm 2.1 μm 2.4 μm 2.7 μm 3.0 μm 3.3 μm 3.6 μm 3.9 μm 4.2 μ

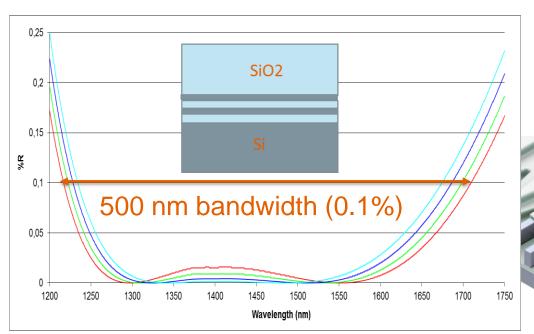


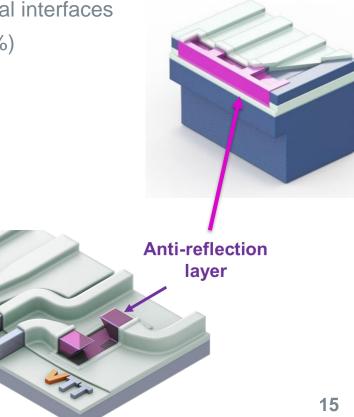
Broadband 3D tapers


Polished 3D tapers from 12 µm to 3 µm



 $3 \times 3 \mu m$


Flat transmission spectra of all 8 waveguides confirm adiabatic spot-size conversion

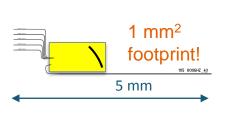


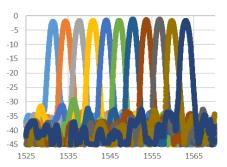
Broadband AR coating designs

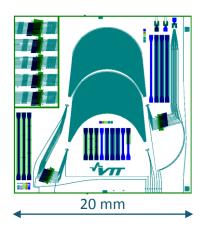
- Anti-reflection coating minimizes reflections in material interfaces
- Baseline: Single SiN layer (75 nm bandwidth for 0.1%)
- Multilayer: Si–SiO₂–Si–SiO₂

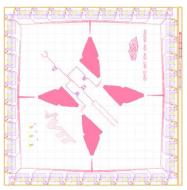
Highlights from silicon photonics in 3 µm SOI

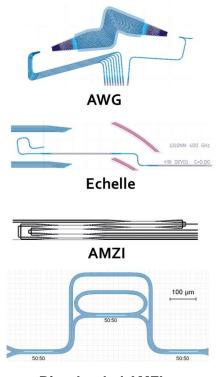
Improvements in filters & multiplexers


AWG multiplexers in 2013 (ESA OTUS):

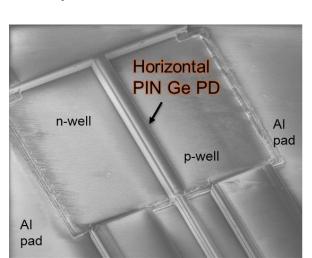

- Down to 5.5 dB loss and -25 dB cross talk
- AWG footprint ~100 mm²

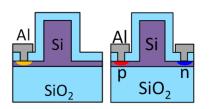


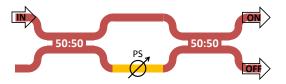

Multiplexers in 2019 (EU PASSION):

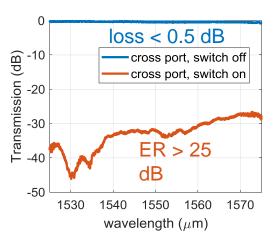

- AWGs with down to 1.6 dB loss and
 -35 dB cross-talk (footprint ~25 mm²)
- Echelle gratings with down to 0.7 dB loss and -25 dB cross-talk

Ring-loaded AMZI

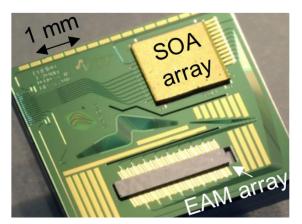

Monolithic integration of modulators, switches and photodetectors


VTT

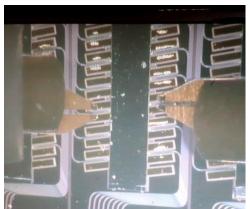

- Implanted heaters for thermo-optic modulation/switching
 - >10 kHZ operation, 24 mW power

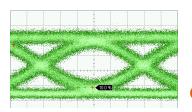


- > 2 MHz operation, <5 mW power
- Epitaxially grownGe photodiodes
 - Responsivity ~1 A/W
 - 3 dB bandwidth up to 40 GHz


Hybrid integration of active components

Lasers, amplifiers, modulators and photodetectors have been hybrid integrated with 3 µm SOI





5x5 mm SOI chip with 8-ch SOA and EAM arrays

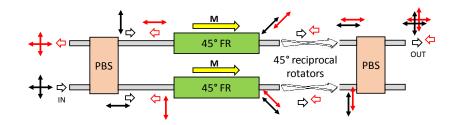
EAM array being tested on SOI

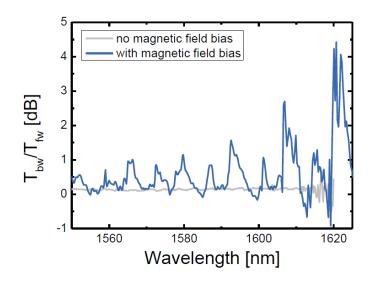
Measured 12.5 Gbps eye diagram

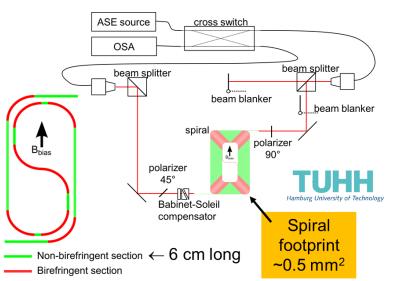
EAM array on GaAs chip

Hybrid VCSEL integration on 3 µm SOI

 VCSEL-SOI coupling with up-reflecting mirrors Mirror output 40 VCSELs and 40x1 MUX in 20x20 mm PIC layout (2x2 cm) DMT up to 50 Gb/s VCSEL MUX #2 LD₂₁ MUX #3 Si-PIC SOI ВОХ LD₁ ¥-LD₃₀ MUX #4 Si Substrate 2 Tb/s transmitter **EU** project







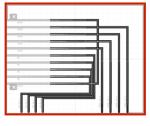
First design and experimental demonstration of Faraday rotation in 3 µm SOI waveguide spirals

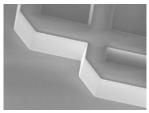
- Demonstration of Faraday rotation in Si
- Layout fine tuning is needed to demonstrate a broadband isolator with high extinction ratio

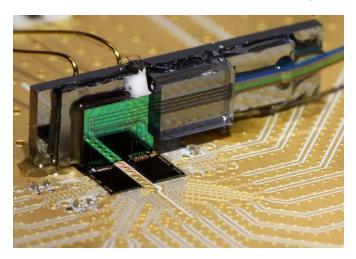
Dirk Jalas et al., "Faraday rotation in silicon waveguides", Proc. IEEE 14th Int. Conf. Group IV Photonics (GFP'17), pp. 141-142, 2017

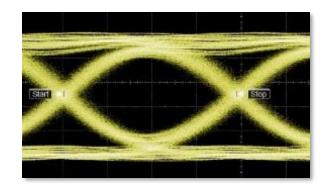
4x25G transceiver on 12 µm SOI

Hybrid VCSEL and PD integration with 12 µm SOI for 4x25G transceiver

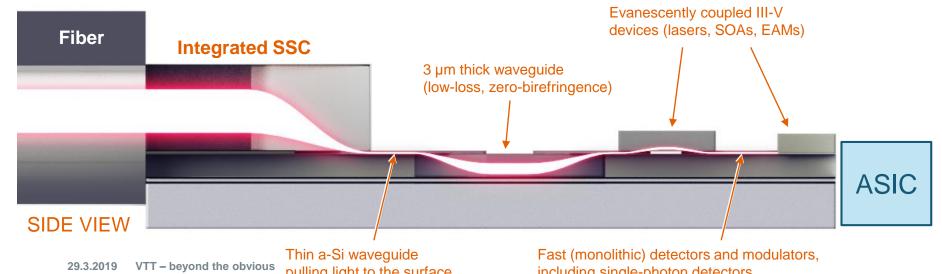

Passive SOI chip added on top of VCSELs and PDs **Fibers** Submount for SOI chip and fibers 1 mm (TEC on backside) (waveguide devices) 28 Gb/s Evaluation board IPCB with Rt coast connectors PD arrays 5 mm Fibers 25 Gb/s **VCSELs** VCSELs & PDs on submount **PDs VCSELs**


Hybrid VCSEL and PD integration with 12 µm SOI for 4x25G transceiver




- Optical SDM & WDM transceivers were assembled and tested
- Optical links were tested up to 25.7 Gbps (SDM)
- Total link loss ~10 dB (mainly from misalignments & VCSEL-SOI mismatch)

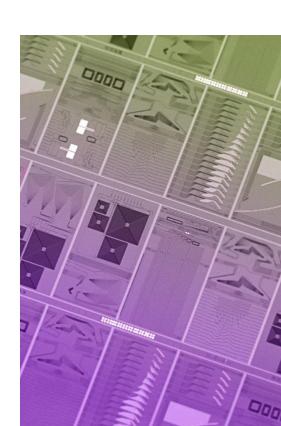
Assembled transceiver

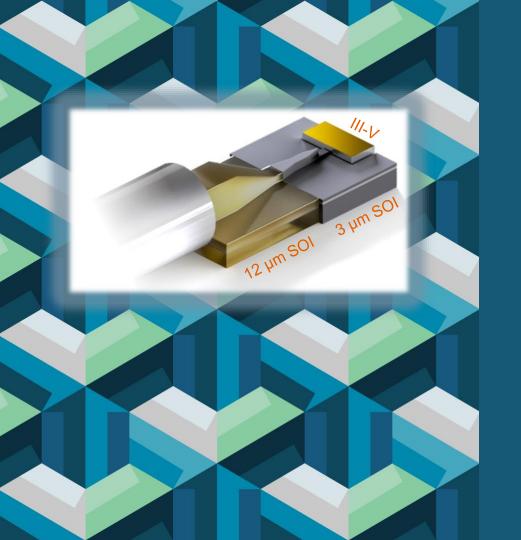

25.7 Gbps eye diagram from VCSEL-SOI-SMF-SOI-PD link

What next?

Local spot-size conversions on 3 µm SOI for I/O coupling and ultra-fast components

- Low-loss, low-cost coupling from 3 µm SOI to standard SM fiber arrays
- High-speed modulators and photodetectors based on locally thinned waveguides
 - Plasmonic devices with ability to reach >> 100 GHz




CONCLUSIONS

Micron-size silicon waveguides already offer

- Low losses in small footprint
- Polarization independent, ultra-broadband operation
- Monolithic & hybrid integration of active components
- Path ready from R&D to volume production
- ...and in the future they are aimed to also offer
 - Isolators & circulators on chip
 - Fast monolithic modulators & photodiodes
 - Even lower losses to support microwave photonics, optical computing and other new applications
 - Single-photon detectors for quantum photonics

Thank you!

@VTTFinland #VTTbeyondtheobvious

silicon.photonics@vtt.fi
www.vtt.fi/siliconphotonics