Towards Error-Free Photonic Interconnects

Jiang Xu

Team Members

Current PhD students

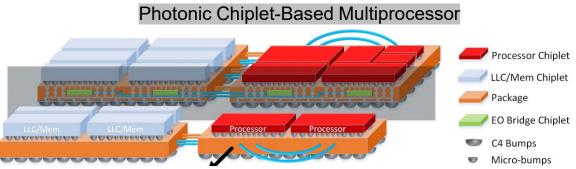
Jun Feng, Shixi Chen, Jiaxu Zhang, Xiao Li, Lin Chen, Yinyi Liu, Yuxiang Fu, Chengeng Li, Fan Jiang, Man Lee Ho, Xianbin Li

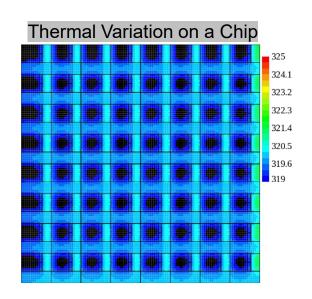
Past group members

- Prof. Weichen Liu, *Nanyang Technological University*
- Prof. Mahdi Nikdast, Colorado State University
- Prof. Sébastien Le Beux, *Concordia University*
- Prof. Yaoyao Ye, Shanghai Jiao Tong University
- Prof. Yiyuan Xie, *Southwest University*
- Prof. Yu Wang, *Tsinghua University*
- Prof. Huaxi Gu, Xidian University
- Dr. Zhongyuan Tian, Huawei
- Dr. Xiaowen Wu, Huawei
- Dr. Peng Yang, *Huawei*
- Dr. Zhe Wang, Huawei
- Dr. Xing Wen, *Apple*
- Dr. Rafael Maeda, Apple
- Dr. Xuan Wang, *HiSilicon*
- Dr. Xuanqi Chen, HiSilicon
- Dr. Zhehui Wang, *A*STAR*
- Dr. Haoran Li, *Alibaba Damo Academy*
- Dr. Zhifei Wang, Electronics Technology Group
- Dr. Duong Luan, Nanyang Technological University

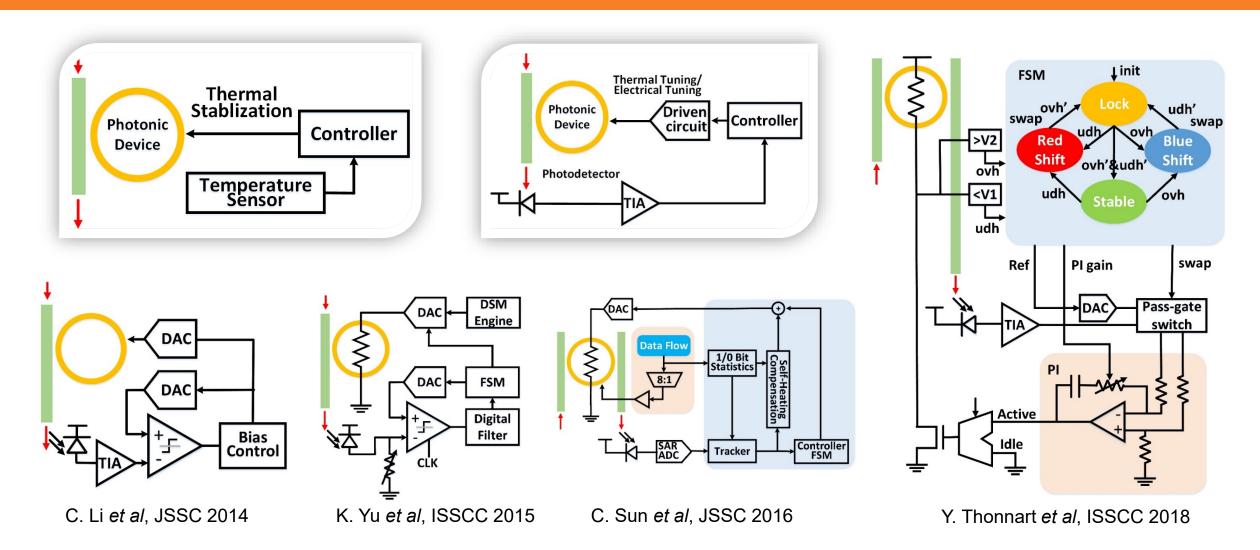
Photonics can Complement Electronics

Electronics is good for computation and memory

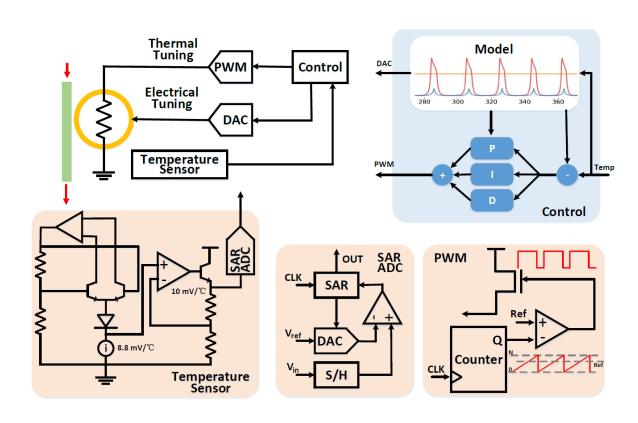

Photonics is good for communications


+Advantages

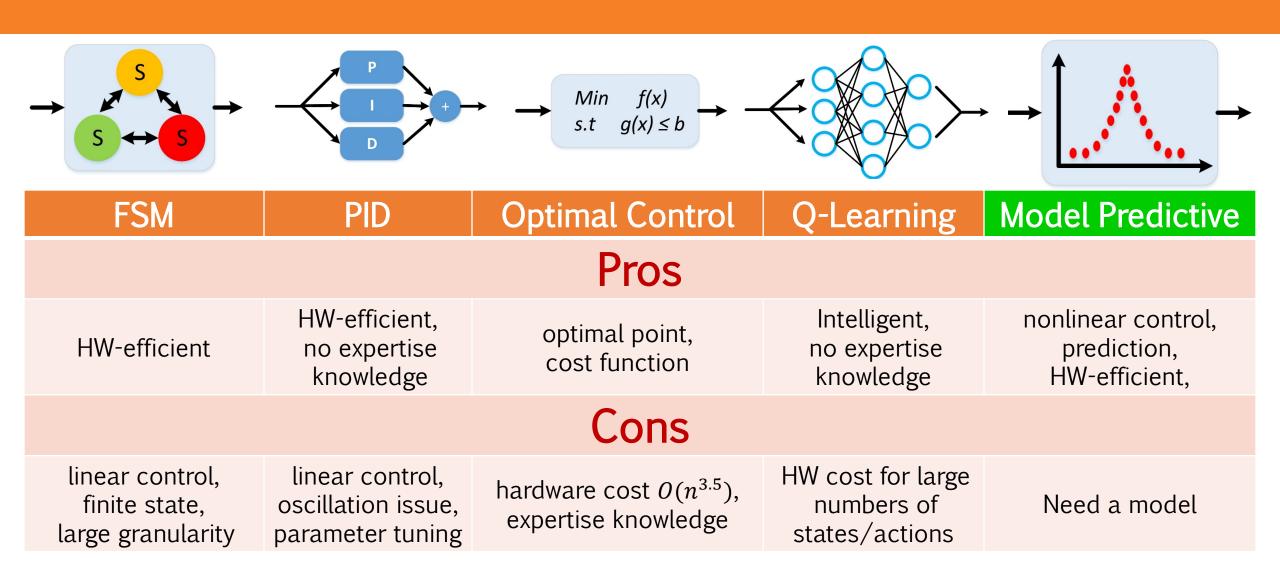
- + Ultra-high bandwidth
- + Low propagation delay
- + Low propagation loss
- + Low sensitivity to environmental EMI


- Challenges

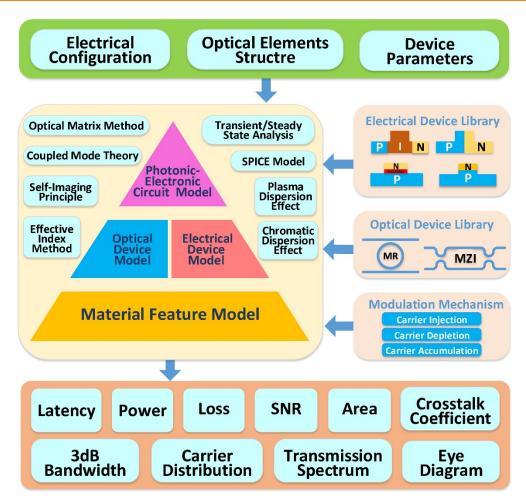
- Thermal variation -> errors and even failures
- Crosstalk noise
- Process variation
- Nonlinear effects
- Difficult to buffer
- OE conversions



Thermal Stabilization vs. Device Turning


Indirect Feedback Tuning (IFT)

- Tune device characteristics based on device temperature
- Complemented electrical and thermal tuning
 - Electrical tuning is fast (ns) but has a small tuning range
 - Thermal tuning is slow (μs) but has a large tuning range
- More responsive
- Low cost and low power
- Do not need any optical port



*X. Chen, *et al.* "Simultaneously Tolerate Thermal and Process Variations through Indirect Feedback Tuning for Silicon Photonic Networks," IEEE TCAD, 2020

IFT Control Logic

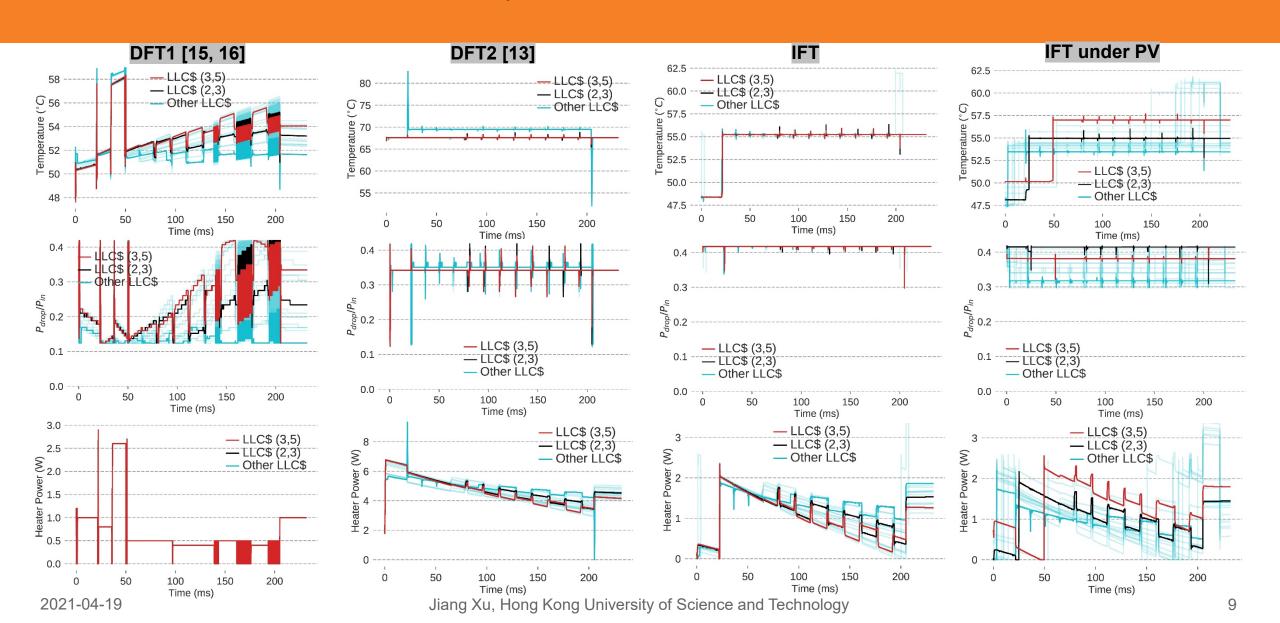
BOSIM is Used to Develop a Control Model

https://eexu.home.ece.ust.hk/BOSIM.html

- BOSIM is a photonic device design, modeling, and simulation tool
- Validated by fabricated devices from 8 companies and institutes
- Study transit and static device characteristics
- Understand device structures and material choices
- Accelerate design exploration

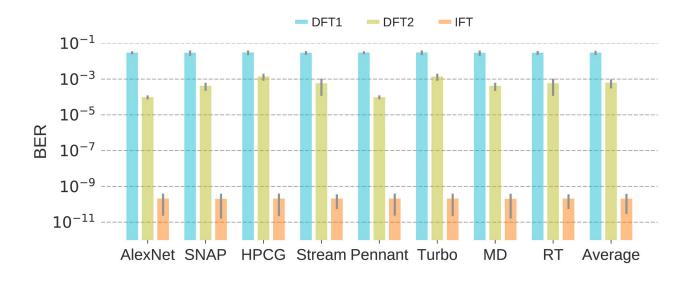
Component Design and System-level Simulation Setup

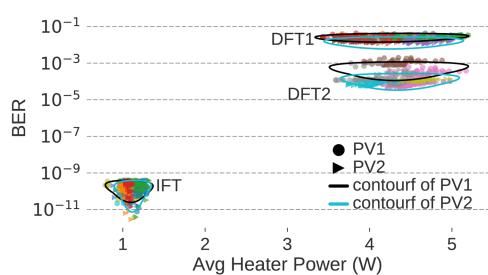
Circuit *							
	ADC	DAC	TIA	OA	Sensor [42]	PD	Calibration
Power (mW)	0.52	2.5	0.71	0.2	1.2	0.03	0.2
Area (μm^2)	183.4	138.3	123.5	123.5	48	10	183.4
Laser efficiency		0.33 [48] Laser Extinction Ratio					10
Photodetector Sensitivity		-14.2 dBm (BER 10^{-12})[49] Communication Band					O-Band


Switch °			
WDM channel amount	14	Ring Radius	near $10~\mu m$
	Phase Shifte	r	·
Rib Width	$0.4~\mu m$	Film Height	$0.4~\mu m$
Etching Depth	$0.3 \ \mu m$ Cladding Height		$1.2~\mu m$
PN Horizontal Offset	$-0.15~\mu m$	PN Vertical Offset	$0.1~\mu m$
	Directional Cou	ıpler	
Length	$0.1~\mu m$ Gap		$0.18~\mu m$
	Doping		
Device Type	L-shaped PN	Modulation Mechanism	Carrier Depletaion
P-area-NA	$1.0 \times 10^{18} \ cm^{-3}$	N-area-ND	$2.0 \times 10^{18} \ cm^{-3}$
P-area-x	$0.6~\mu m$	N-area-x	$0.6~\mu m$
	SPICE Mod		
au	0.5 ns	R_S Series Resistance	55 Ω
I_S	$1.0 \times 10^{-8} \ \mu A$	n_{pn}	1
V_0		$C_{j}(0)$	0.4 pF
IBV	$1000 \ \mu A$	BV	40.0 V
DC Bias	-4 V	Vpp	11 V
	Material		
	substrate/cla	adding guiding f	ilm air
refractive index	SiO_2 : 1.45	Si: 3.45	1
absorption (mm^{-1})	N.A.	0.015	N.A
thermal diffusivity (mm^2/s)	SiO ₂ : 0.83	Si: 88	19
permittivity ($\epsilon_0 = 8.854 \times 10^{-14}$)	$3.9\epsilon_0$	$11.7\epsilon_0$	ϵ_0

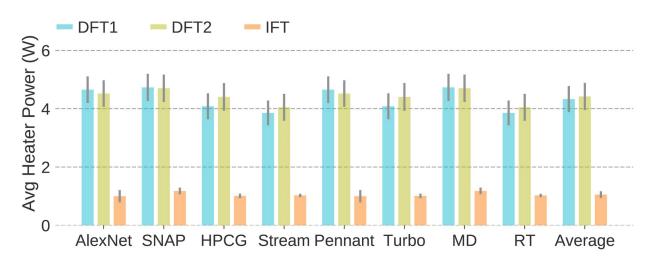
System level simulations use

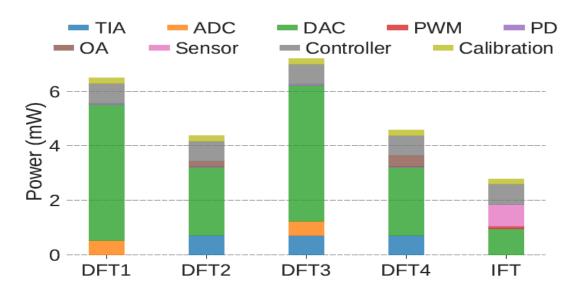
- JADE multiprocessor simulation environment
- COSMIC application benchmark suite

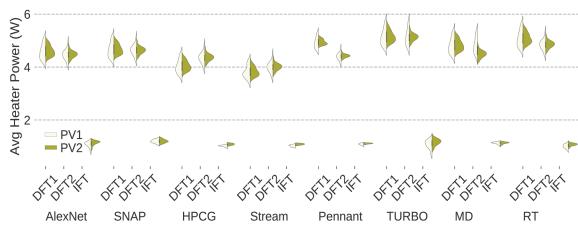

Parameter		Value	e Parameter		Value			
Architecture								
Core	RISC-V, 64-Core		Working freque	ency	3 GHz			
Core cluster	4	4 core/cluster	L1 I/D cache	Priv	Private, 32 KB/Core			
L2 cache	Shared,	128 KB/Core	Coherence Prot	ocol Direc	Directory-based MOSI			
Cache line size		64 Byte NoC Topology			Ring			
Variation								
wafer diameter		200 mm	chip die area		236.7 mm^2			
chip thermal threshold		354.95 K	•					
Process Variation †								
	linewidth	gap	film thickness	waveguide loss	s dopant			
noise type	Simplex	Simplex	Joint Gaussain	Simplex	Perlin			
noise radius	20 mm	20 mm	N.A.	30 mm	N.A.			
noise amplitude PV1	2.4 nm	1 nm	2 nm	1.5 dB	$10^{17} cm^{-3}$			
noise amplitude PV2	1.6 nm	0.6 nm	1.2 nm	1.0 dB	$10^{17} cm^{-3}$			
Thermal Variation ‡								
		silicon chip		heat sink	spreader			
thermal conductivity $(W/(m \cdot K))$		100.0		400.0	400.0			
specific heat $(J/(m^3 \cdot K))$		1.75×10^{6}		3.55×10^{6}	3.55×10^{6}			
thickness (mm)		0.15		6.9	1.0			
side (mm)		N/A		60	30			
heat sink convection resistance		0.1 K/W	1 K/W heat sink convection capacitance		140.4 J/K			


Case Analysis: SNAP Benchmark

Bit Error Rate

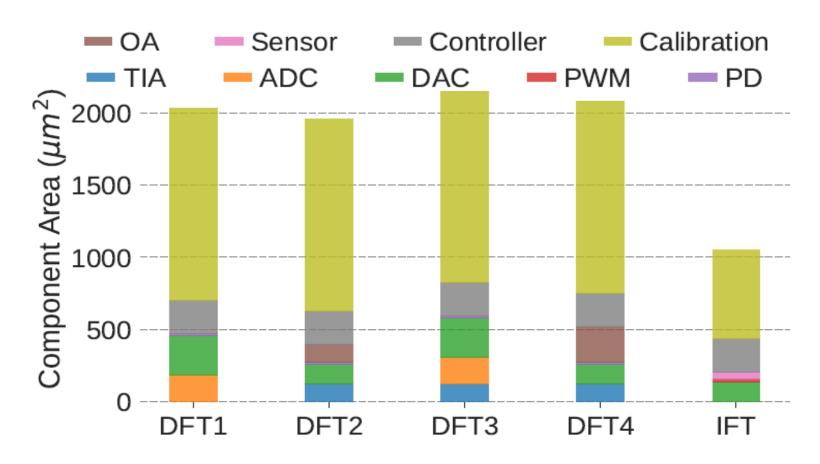

- IFT can achieve BER better than 10⁻⁹
 - Based on the simulation results under COSMIC benchmark suite
- IFT shows 10⁵~10⁸ improvement over other methods
- IFT is robust under process variations





Power Overhead

- Dominated by heater power
- IFT is up to 4X more power efficient than other methods
- IFT is more robust under process variations than other methods



Area Overhead

■ IFT is up to 51% smaller than other methods

Reference

- [1] M. Pantouvaki et al., "Active components for 50 Gb/s NRZ-OOK optical intercon- nects in a silicon photonics platform," JLT, 2017.
- [2] M. Rakowski, "Silicon photonics platform for 50G optical interconnects," in PSW, 2017.
- [3] J. Sun et al., "A 128 Gb/s PAM4 Silicon Microring Modulator," in OFC, 2018.
- [4] J. B. Driscoll et al., "First 400G 8-Channel CWDM Silicon Photonic Integrated Transmitter," in GFP, 2018.
- [5] Z. Wang et al., "High-Radix Nonblocking Integrated Optical Switching Fabric for Data Center," JLT, 2017.
- [6] Y. Shen et al., "Deep learning with coherent nanophotonic circuits," Nature photonics, 2017.
- [7] J. Teng et al., "Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides," Optics express, 2009.
- [8] B. Guha et al., "Athermal silicon microring resonators with titanium oxide cladding," Optics express, 2013.
- [9] X. Xiao et al., "25 Gbit/s silicon microring modulator based on misalignment- tolerant interleaved PN junctions," Optics express, 2012.
- [10] J. C. Rosenberg et al., "A 25 Gbps silicon microring modulator based on an interleaved junction," Optics express, 2012.
- [11] D. MarrisMorini et al., "Low loss 40 Gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm SOI wafers." Optics express. 2013.
- [12] M. Georgas et al., "A monolithically-integrated optical transmitter and receiver in a zero-change 45nm SOI process," in VLSIC, 2014.
- [13] Y. Thonnart et al., "A 10Gb/s Si-photonic transceiver with 150muW 120mus-lock- time digitally supervised analog microring wavelength stabilization for 1Tb/s/mm2 Die-to-Die Optical Networks," in ISSCC, 2018.
- [14] C. Li et al., "Silicon photonic transceiver circuits with microring resonator bias- based wavelength stabilization in 65 nm CMOS." JSSC. 2014.
- [15] K. Yu et al., "22.4 A 24Gb/s 0.71pJ/b Si-photonic source-synchronous receiver with adaptive equalization and microring wavelength stabilization," in ISSCC, 2015.
- [16] H. Li et al., "22.6 Å 25Gb/s 4.4V-swing AC-coupled Si-photonic microring transmitter with 2-tap asymmetric FFE and dynamic thermal tuning in 65nm CMOS," in ISSCC, 2015.
- [17] C. Sun et al., "A 45 nm CMOS-SOI Monolithic Photonics Platform With Bit- Statistics-Based Resonant Microring Thermal Tuning," JSSC, 2016.
- [18] R. Wu et al., "Variation-Aware Adaptive Tuning for Nanophotonic Interconnects," in ICCAD, 2015.
- [19] A. Qouneh et al., "Aurora: A thermally resilient photonic network-on-chip archi- tecture," in ICCD, 2012.
- [20] Z. Zhang et al., "A Learning-Based Thermal-Sensitive Power Optimization Ap- proach for Optical NoCs," JETC, 2018.
- [21] Y. Xu et al., "Tolerating Process Variations in Nanophotonic On-chip Networks," in ISCA, 2012.
- [22] Y. Ye et al., "System-Level Modeling and Analysis of Thermal Effects in WDM- Based Optical Networks-on-Chip," TCAD, 2014.
- [23] T. Zhang et al., "Thermal management of manycore systems with silicon-photonic networks," in DATE, 2014.
- [24] C. J. Nitta et al., "Resilient microring resonator based photonic networks," in MICRO, 2011.
- [25] Z. Li et al., "Reliability modeling and management of nanophotonic on-chip networks," TVLSI, 2012.
- [26] M. Mohamed et al., "Reliability-Aware Design Flow for Silicon Photonics On-Chip Interconnect," TVLSI, 2014.
- [27] J. L. Abellan et al., "Adaptive Tuning of Photonic Devices in a Photonic NoC Through Dynamic Workload Allocation," TCAD, 2016.
- [28] P. Yang et al., "Multi-Domain Inter/Intra-Chip Silicon Photonic Networks for Energy-Efficient Rack-Scale Computing Systems," TCAD, 2019.
- [29] M. Bahadori et al., "Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform," JLT, 2018.

- [30] H. Li et al., "Thermal aware design method for VCSEL-based on-chip optical interconnect," in DATE, 2015.
- [31] C. Sun et al., "A 45nm SOI monolithic photonics chip-to-chip link with bit- statistics-based resonant microring thermal tuning," in VLSIC. 2015.
- [32] E. Timurdogan et al., "Automated wavelength recovery for microring resonators," in CLEO, 2012.
- [33] K. Padmaraju et al., "Thermal stabilization of a microring modulator using feedback control," Optics express, 2012.
- [34] D. Ding et al., "GLOW: A global router for low-power thermal-reliable interconnect synthesis using photonic wavelength multiplexing," in ASP-DAC, 2012.
- [35] H. Jayatilleka et al., "Automatic Configuration and Wavelength Locking of Coupled Silicon Ring Resonators," JLT, 2018.
- [36] Y. Demir et al., "Parka: Thermally Insulated Nanophotonic Interconnects," in tISNC, 2015.
- [37] X. Chen et al., "Modeling and Analysis of Optical Modulators Based on Free- Carrier Plasma Dispersion Effect," TCAD, 2019.
- [38] S. K. Selvaraja et al., "Subnanometer Linewidth Uniformity in Silicon Nanopho- tonic Waveguide Devices Using CMOS Fabrication Technology," JSTOE, 2010.
- [39] A. E. Lim et al., "Review of Silicon Photonics Foundry Efforts," JSTQE, 2014.
- [40] N. Drego et al., "Lack of Spatial Correlation in MOSFET Threshold Voltage Variation and Implications for Voltage Scaling," TSM, 2009.
- [41] F. Horikiri et al., "Wafer-Level Donor Uniformity Improvement by Substrate Off- Angle Control for Vertical GaN-on-GaN Power Switching Devices," TSM, 2017.
- [42] P. Chen et al., "A time-to-digital-converter-based CMOS smart temperature sensor," JSSC, 2005.
- [43] M. A. Pertijs et al., "A CMOS smart temperature sensor with a 3σ inaccuracy of 0.1 °C from -55 °C to 125 °C." JSSC, 2005.
- [44] K. Souri et al., "A CMOS Temperature Sensor With a Voltage-Calibrated Inaccuracy of 0.15 °C (3σ) from -55 °C to 125 °C." JSSC, 2013.
- [45] W. Huang et al., "HotSpot: A compact thermal modeling methodology for early- stage VLSI design," TVLSI, 2006.
- [46] M. Rakowski et al., "22.5 A 4 20Gb/s WDM ring-based hybrid CMOS silicon photonics transceiver," in ISSCC, 2015.
- [47] X. Wu et al., "SUOR: Sectioned Undirectional Optical Ring for Chip Multiproces- sor," JETC, 2014.
- [48] A. V. Krishnamoorthy et al., "Progress in low-power switched optical intercon- nects," JSTQE, 2011.
- [49] G. Masini et al., "A four-channel, 10 Gbps monolithic optical receiver in 130nm CMOS with integrated Ge waveguide photodetectors," in NFOEC, 2007.
- [50] F. Y. Liu et al., "10-Gbps, 5.3-mW Optical Transmitter and Receiver Circuits in 40-nm CMOS," JSSC, 2012.
- [51] R. K. V. Maeda et al., "JADE: A Heterogeneous Multiprocessor System Simulation Platform Using Recorded and Statistical Application Models," in AISTECS, 2016.
- [52] S. Li et al., "McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures," in MICRO, 2009.
- [53] "APEX benchmark," http://www.nersc.gov/research-and-development/apex/apex-benchmarks

