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Photonics can Complement Electronics

 Electronics is good for computation and memory
 Photonics is good for communications
+Advantages

+ Ultra-high bandwidth
+ Low propagation delay
+ Low propagation loss
+ Low sensitivity to environmental EMI

- Challenges
- Thermal variation -> errors and even failures
- Crosstalk noise
- Process variation
- Nonlinear effects
- Difficult to buffer
- OE conversions
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Thermal Variation on a Chip

Photonic Chiplet-Based Multiprocessor



Thermal Stabilization vs. Device Turning

Y. Thonnart et al, ISSCC 2018K. Yu et al, ISSCC 2015 C. Sun et al, JSSC 2016C. Li et al, JSSC 2014
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Indirect Feedback Tuning (IFT)
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 Tune device characteristics based on 
device temperature
 Complemented electrical and thermal 
tuning
 Electrical tuning is fast (ns) but has a small tuning 

range
 Thermal tuning is slow (𝜇𝜇𝑠𝑠) but has a large tuning 

range

 More responsive
 Low cost and low power
 Do not need any optical port *X. Chen, et al. “Simultaneously Tolerate Thermal and Process 

Variations through Indirect Feedback Tuning for Silicon Photonic 
Networks,” IEEE TCAD, 2020



IFT Control Logic

FSM PID Optimal Control Q-Learning Model Predictive

Pros
HW-efficient

HW-efficient,
no expertise 
knowledge 

optimal point,
cost function

Intelligent,
no expertise 
knowledge

nonlinear control,
prediction,
HW-efficient,

Cons
linear control,
finite state,

large granularity 

linear control,
oscillation issue,
parameter tuning

hardware cost 𝑂𝑂(𝑛𝑛3.5),
expertise knowledge

HW cost for large 
numbers of 

states/actions
Need a model
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BOSIM is Used to Develop a Control Model

 BOSIM is a photonic device 
design, modeling, and simulation 
tool
 Validated by fabricated devices 
from 8 companies and institutes
 Study transit and static device 
characteristics
Understand device structures 
and material choices
Accelerate design exploration

https://eexu.home.ece.ust.hk/BOSIM.html
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https://eexu.home.ece.ust.hk/BOSIM.html


Component Design and System-level Simulation Setup
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System level simulations use
• JADE multiprocessor simulation environment
• COSMIC application benchmark suite



Case Analysis: SNAP Benchmark
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DFT1 [15, 16] DFT2 [13] IFT IFT under PV



Bit Error Rate

 IFT can achieve BER better than 10−9
 Based on the simulation results under COSMIC benchmark suite

 IFT shows 105~108 improvement over other methods
 IFT is robust under process variations
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Power Overhead

Dominated by heater power
 IFT is up to 4X more power efficient 
than other methods
 IFT is more robust under process 
variations than other methods
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Area Overhead

 IFT is up to 51% smaller than other methods
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