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Emerging ML Applications
 ML applications are becoming increasingly complex
 Some recent examples from our lab:

 Object detection in autonomous vehicles
 J. Dey, W. Taylor, and S. Pasricha, “VESPA: Optimizing Heterogeneous Sensor Placement and 

Orientation for Autonomous Vehicles”,IEEE Consumer Electronics, Mar 2021.

 Unsupervised deep learning for network anomaly detection
 V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “INDRA: Intrusion Detection using Recurrent 

Autoencoders in Automotive Embedded Systems”, IEEE TCAD, Nov 2020.

 Deep learning models and optimizations for IoT applications
 S. Tiku and S. Pasricha, “Overcoming Security Vulnerabilities in Deep Learning Based Indoor 

Localization on Mobile Devices”, ACM TECS, Jan 2020.

 Deep reinforcement learning for embedded mobile devices
 A. Khune and S. Pasricha, “Mobile Network-Aware Middleware Framework for Energy Efficient Cloud 

Offloading of Smartphone Applications”, IEEE Consumer Electronics, 2019.

 Inference acceleration is becoming crucial
 for energy- and resource-constrained platforms executing real-

time embedded and IoT applications
 Domain-specific ML hardware accelerators preferred 

 provide many benefits over GPUs and CPUs

http://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/j62.pdf
http://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/j64.pdf
http://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/j57.pdf
http://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/j54.pdf
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Hardware Accelerators for ML
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Case for Silicon Photonics in ML Accelerators
 Example: Photonic-Memristor AI 

Training/Inference Accelerator
 D. Dang, S. V. R. Chittamuru, S. Pasricha, R. 

Mahapatra, D. Sahoo, “BPLight-CNN: A 
Photonics-based Backpropagation Accelerator 
for Deep Learning”, ACM JETC, 2021.

https://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/j67.pdf
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Computing and Communication with Photonics
 Coherent computation

Single wavelength; weights represented 
using electrical field amplitude 

Challenges:
Scalability issues
Phase encoding noise
Phase error accumulation

 Noncoherent computation
Phase-change in devices used to 

imprint weight/activation values on 
signal intensities of multiple λ

F. Sunny, E. Taheri, M. Nikdast, S. Pasricha, “A Survey on Silicon Photonics for Deep Learning”, ACM JETC, 2021.

https://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/j68.pdf
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Challenges in Noncoherent Accelerators 
 Large latencies induced by 

thermo-optic tuning (𝜇𝜇s scale)
Thermo-optic tuning preferred for its 

large tuning range (~15 nm)

MR resonance shifts ΔλMR
Fabrication process variation induced 
Thermal variation induced 

 Thermal crosstalk in MRs 
 limits the achievable resolution
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Potential of Cross-Layer Design

Network architectures: [TPDS’18], [JETC’17], [GLSVLSI’15 
(Best Paper)], [TECS’14], [ASPDAC’11], [ISQED’10 (Best Paper)], [ASPDAC’08] Thermal optimization: [ICCAD’17], [ASPDAC’17], [VLSID’16]

Crosstalk reduction: [TMSCS’18], [NOCS’17], [ISQED’16 
(Best Paper Cand.)], [CODES+ISSS’16], [D&T’15]Security mechanisms: [TCAD’20], [NOCS’18], [DAC’18]

S. Pasricha, M. Nikdast, “A Survey of Silicon Photonics for Energy Efficient Manycore Computing” IEEE Design and Test, Aug 2020.

http://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/j61.pdf
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CrossLight

 A Cross-Layer Optimized SiPh
Neural Network Accelerator
 Device-level optimizations

 Improved SiPh device designs for FPV resilience

 Circuit-level optimizations
 An enhanced tuning circuit to support large thermal-induced 

resonance shifts and high-speed, low-loss device tuning
 Consideration of thermal crosstalk mitigation methods to 

improve the weight resolution achievable by our architecture

 Architecture-level optimizations
 Improved wavelength reuse 
 Smart matrix decomposition for scalable mapping
 Both optimizations increase throughput and energy-efficiency

F. Sunny, A. Mirza, M. Nikdast, S. Pasricha, “CrossLight: A Cross-Layer Optimized Silicon Photonic Neural 
Network Accelerator”, to appear, IEEE/ACM Design Automation Conference (DAC), 2021

https://arxiv.org/abs/2102.06960
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FPV Resilient MR Devices
 Increase in FPV tolerance with increasing widths, when ww = wr

 at the cost of low cross-over coupling
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MR Device Engineering
 Increase in FPV tolerance when ww ≠ wr

 With a relatively smaller reduction in coupling!
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40% less

A. Mirza, F. Sunny, S. Pasricha, and M. Nikdast, “Silicon Photonic Microring Resonators: Design Optimization under Fabrication Non-uniformity“, IEEE/ACM DATE, 2020.

http://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/c133.pdf
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Tuning Circuits
FP/thermal variations compensated using tuning circuits
Thermo-optic (TO) tuning

Uses in-built heaters to change effective index 
Large latencies (𝜇𝜇s scale)
Induces thermal crosstalk; mitigation approaches:

MRs placed far apart (125 μm to 200 μm)
 Increases area, waveguide length, laser power

Electro-optic (EO) tuning for small variations
Carrier injection to impact effective index 
Faster and more energy-efficient than TO tuning
But much smaller range than TO tuning

F. Gan et al., in Photonics in 
Switching, Aug. 2007

K. Padmaraju et al., in Nanophotonics, 
vol.3, no. 4-5, Sept. 2013
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Tuning Circuit Optimization
 Hybrid EO + TO tuning for reduced latencies

EO tuning for speed and lower energy consumption (Range < 1.5 nm)
 used to imprint weights and activations on wavelengths

Thermal Eigenmode Decomposition (TED) based TO tuning
 to collectively tune all MRs in an MR bank and cancel thermal crosstalk
 reduces the effective area, waveguide length, laser power over conventional approach

 Explored ideal layout for MRs
Optimal MR radius: 5 μm
Optimal inter-MR distance: 5 μm
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CrossLight Architecture

DAC units used to 
imprint values on to 
tuning circuits and 

ADC array to convert 
analog sum values to 

digital domain

Electronic Control 
Unit for: 
(1) fetching model 
parameters from 
global memory + 
decomposing 
matrices to vectors; 
(2) mapping vectors 
to the photonic 
accelerators;
(3) Applying non-
linearities

Photonic domain 
for high 

throughput, 
energy efficient 
MAC operation
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Photonic Computation
 CrossLight has separate implementations 

for CONV and FC layer acceleration
Vastly different order of vector dot product 

(VDP) required to implement each layer
CONV: n VDP units, supporting N×N dot product
 FC: m VDP units, supporting K×K dot product
 n > m
K > N

 To reduce laser power we reuse the 
unique lasers needed per VDP
Further dividing N or K into smaller values 

across waveguides
 From analysis: N or K can be maximum of 15 
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Experimental Setup
Crosslight able to achieve 16-bit resolution
Sufficient for various NN models
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CrossLight Architectural Exploration

 Optimal (N,K,n,m) configuration was found from analysis as: (20,150,100,60)
 n CONV VDP units, supporting N×N dot product; m FC VDP units, supporting K×K dot product
 Optimal => best FPS/EPB 
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Comparison with Other Accelerators
 DEAP-CNN 

 [V. Bangari et al., IEEE JQE, 2020]
 Implements a photonic CNN accelerator 
 Uses multiple, connected photonic CONV units
 MR based architecture

 HolyLight
 [W. Liu et al., IEEE/ACM DATE, 2019]

 Microdisks considered instead of MRs 
 For lower area and power consumption

 On-chip photonic microdisk based MACs 
 Photonic summation also used

 Electronic-domain accelerators
 DaDianNao, Null Hop, and EdgeTPU
 GPU: Nvidia Tesla P100
 CPUs: Intel Xeon Platinum 9282 (IXP9282), 

and AMD Threadripper 3970x (AMD-TR)
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ML Accelerator Comparison

75 W power 
consumption

9.5x lower 
than 

HolyLight
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ML Accelerator Comparison

Significant reduction in 
EPB over electronic 

platforms

Significant 
improvement in 

throughput power 
efficiency
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Conclusion
 CrossLight utilizes silicon photonic device-level optimizations 

along with tuning circuit and architecture level optimizations
These optimization result in FPV and thermal crosstalk resilience, and lower 

laser and tuning power consumption

 CrossLight is able to show improvements in FPS/Watt and EPB 
9.5x better EPB, 15.9x better FPS/Watt vs. HolyLight [W. Liu et al., DATE, 2019]

 These results showcase the effectiveness of cross-layer 
optimization efforts in realizing photonic NN accelerators
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