Process Enabled Custom Component Design Flow for Photonic Integrated Circuits

Ahsan Alam, Ansys (Lumerical)

Outline

- Motivation
- Enabling a complete photonic design ecosystem
- Custom component design with Layer builder
- Support for active components
- See it in action
- Support for process variations
- Q&A

Foundry Compatible Custom Component Design

A Comprehensive Suite of Leading Photonic Design Tools

PHOTONIC MULTIPHYSICS SIMULATION

FDTD

3D Electromagnetic Solver

FDE

Finite-difference Eigenmode Solver

EME

Finite-Difference Eigenmode Expansion Solver

varFDTD

2.5D variational FDTD Solver

CHARGE

3D Charge Transport Simulator

HEAT

3D Heat Transport Solver

DGTD

3D Electromagnetic Solver

FEEM

Waveguide Solver

MQW

Quantum Well Gain Solver

STACK

Optical Multilayer Solver

A Comprehensive Suite of Leading Photonic Design Tools

PHOTONIC INTEGRATED CIRCUIT SIMULATION

INTERCONNECT

CML Compiler

INTERCONNECT compact models

Was a superior of the superior of

Process-enabled Custom Component Design

How Does Layer Builder Work?

Automated Data Collection Workflows

Foundry Process Files Currently Available

More to come...

Support for Active Devices

Optical/electrical/thermal materials

3D geometry

Doping

Simulation results

Let's See It in Action!

Simulation workflow of an Electrical Phase Shifter

https://support.lumerical.com/hc/en-us/articles/360042328674-PN-depletion-phase-shifter

Process Variations During Component Design

- Process file to include statistical information:
 - Pattern process parameters: layout bias
 - Stack process parameters: layer thickness, etch depth, etc.
- Statistical simulation methods:
 - Monte Carlo:
 - Statistical variables are randomly varied for a defined number of times and FOMs are studied
 - Most complete, but more expensive
 - Corners:
 - Worst case values of statistical variables are used and FOMs are studied
 - Multiple corner cases can exist

Example: Process Variation for Y-branch

- SOI layer thickness as a process variable.
- The process variable can be changed randomly and extract transmission results: Monte Carlo analysis.
 - Statistical distribution of process variations are required. (for normal distribution: sigma and mean)
- The worst case scenario for the physical process variable can be determined and extract transmission results:
 Corner analysis.
 - Corner cases should be provided
- Superposition of effects of multiple process variables can be modeled.

End User Workflow

Thank You

Questions?

Ansys