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Need for Speed

Software neural networks
on digital hardware

out

v

Object recognition

Hz - kHz

Hardware neural networks
Neuromorphic Electronics

l

A silicon neuron Nature 354 (1991)
Misha Mahowald* & Rodney Douglasti

* Computation and Neural Systems Laboratory, California Institute of
Technology, Pasadena, California 91125, USA

T MRC Anatomical Neuropharmacology Unit, University of Oxford,
Oxford OX1 3TH, UK

BY combining neurophysiological principles with silicon engineer-
ing, we have produced an analog integrated circuit with the func-
tional characteristics of real nerve cells. Because the physics
underlying the conductivity of silicon devices and biological mem-
branes is similar, the ‘silicon neuron’ is able to emulate efficiently
the ion currents that cause nerve impulses and control the dynamics
of their discharge. It operates in real-time and consumes little
power, and many ‘neurons’ can be fabricated on a single silicon
chip. The silicon neuron represents a step towards constructing
artificial nervous systems that use more realistic principles of
neural computation than do existing electronic neural networks.

Baradwlictfoautimaplemity
tepodfiffal constraints

« Bandwidth-complexity
tradeoff!

Prucnal, Shastri et al. Adv. Opt. Photonics 8 (2016)

Optical neural networks
Neuromorphic Photonics

Nonlinear optimization
Ultrafast control
RF signal processing
Quantum tomography

GHz

Could enable new applications
that are challenging to be
achieved with electronics!



Ferreira de Lima, Prucnal et al. JLT (2019)

Applications for Photonic Neural Networks Model predicive control

Target

. . = A
0 Nonlinear programming A N
— Nonlinear optimization problems (robotics, )
predictive control, autonomous vehicles) e e

Ordlnary/partlal differential equations Tait, Shastri, Prucnal et al. Sci. Rep. (2017)  Shen et al. Nat. Photon. (2017)

Q High-performance Computing and Lorenz attractor Vector-matrix multiplier
. . b) ; : | A ————— ——
Machine Learning
— Vector-matrix multiplications
— Deep learning inference

30

0
_ : : 30 0 |0 X1
Ultrafast and online learning i Huang, Shastri, Prucnal et al.
I I I Ma, Shastri, Prucnal et al. OE (2019) Nature Electron. (2021)
J Intelllgent Slgnal pl’OCGSSIﬂg PCA, ICA, BSS Fiber nonlinearity compensation

Optical fiber communications
— mm-wave edge processing
Spectral mining

QO Physics
Qubit readout classification

— High-energy particle collision experiments

Huang, Prucnal, Shastri et al. arXiv:2105.09943 (2021)
Shastri, Tait, Prucnal et al. Nature Photonics 15 (2021)




We Have Been Here Before: What Has Changed?

. Psaltis, D., & Farhat, N. (1985) Photonic Moore’s Law
:S%nr?:f:' Vs 'f 73V, Ti= 0 Optical information-processing systems can have high 108 . ' '
processing power because of the large degree of paral- & Monaiithic B
: lelism as well as the interconnection capability that is O hs Mg:glith=2 S"i B——e‘-l&-—’\.
: achievable. Typically, more than 108 parallel pro- a 4 Heterogeneous InP/Si or GaAs/Si
cessing channels are available in the optical system, and )
\ furthermore each of these channels can be optically S 104t
Vi s interconnected (broadcasted) to 108 other channels. 5
ARRAY The majority of optical processors are analog systems, g-
ILD,LED:Eo MASK PO designed to perform linear operations. The accuracy o
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FEEDBACK,GAIN, AND THRESHOLDING -é ®
Lightwave Lab Princeton (2018) 3 . g
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Margalit et al. Appl. Phys. Lett 118 (2021)
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Free-space photonic Silicon photonic neural
neural networks networks (2x2 mm?)




Neuromorphic Hardware for Al

Robert Keyes’ main criticisms of optical computing in the 1980’s

R. W. Keyes, Optical Logic: In the light of computer technology Optica Acta, 32 (5), 1985
R. W. Keyes, What makes a good computer device? Science, 230, pp.138-144, 1985

Computing

Communication -

Linear Algebra
System

Electronics Photonics*
" Nonlinearity Easy (transistors) Hard (but O-E-O)**
1 Memory Easy (DRAM, flip-flop)  Hard
. Gain Easy Easy (O-E-O)
[ Communication ~(1/2)CV2 energy cost Free (waveguide)
| Fan-out ~(1/2)CV?2 energy cost Free (beamsplitter, WDM)
-[ MAC (matrix-vector) 'Hard (for digital) Easy (EO Components)
‘[ Domain Crossings No Yes*™™ (0O-E-0)

* State-of-art, e.g. Review in Shastri et al. Nature Phot. (2021)

Feldman Nature (2021)

** Tait et al. Sci. Rep. (2017)
Tait et al. Phys. Rev. Appl. (2018)

Credit: Tait (NIST), Englund (MIT) Sorger (GWU)



Neuromorphic Photonic Architectures

Reservoir computing
(UIB, Ghent, Femto-St)

Multiwavelength Networks
(Princeton, Queen’s, GWU)

Linear weighted addition (dot products) Nonlinear activation
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Coherent networks
(MIT, Stanford)
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Brunner et al. Nat. Commun. 4 (2012)
Vandoorne et al. Nat. Commun. 5 (2014)

Tait et al Sci. Rep. 4 (2017)
Feldman et al. Nature 589 (2021)

Shen et al. Nat. Photon. 11 (2017)
Hughes et al. Optica 5 (2018)

Spiking networks
(Princeton, Oxford, Strathclyde)

silicon photonic network lI-V laser array

Diffractive Optics
(UCLA, Femto-St)

Diffractive Deep Network

Input Object

Superconducting
(NIST)
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Shastri et al. Sci. Rep. 6 (2016)
Feldman et al. Nature 569 (2019)

Bueno et al. Optica 5 (2018)
Lin et al. Science 361 (2019)

Shastri, Tait, Prucnal et al. Nature Photonics 15 (2021)

Shainline et al. Phys. Rev. Appl. 7 (2017)




Artificial Neuron Model that Emulates Biology

Neural network structure

Neurons have three key functions

Pattern { 1) Weight multiple incoming input signals
Matching 2) Sum weighted inputs

Decision | 3) Threshold the weighted sum to determine output

Biological neuron

Axon terminal

i Nonlinearity i

inspired Vi |

> : SO :

... Outputs : i

e e : 3) threshold |

Myelinated axon > : I

1) weight




Scalable, Cascadable & Localized Multiwavelength Photonic Neuron

Weights

Nonlinearity

¥

Yj

Nonlinear Back End

WDM Microring Weight Bank THRU

i X1 (A ) e if; PUMP

i x2(12) ”@@ ‘ Optical Output |

| DROF | yi(t) = @lsk()]
: = GND Output I

V- .
Control Balanced PD ' Modulator ‘ 90{
(Summing) ' (Nonlinearity)

| 1
R L1171 SR

[Va)
=

Il
S
&l

Q All key functions are physically localized in each neuron, enabling distributed processing
0 OEO enables gain, thresholding and cascadability/recurrent operation

10



Monolithically-Integrated Photonic Neuron

Linear Front End Nonlinear Back End

_____________________________________________

WDM i Microring Weight Bank THRU s, =T

x1(21) ! |

(i) M<W2>@ . . Optical Output
. DROP :

— - elt) = plse(t)]

xn(An) i V- o
i Control Balanced PD Modulator ‘ Spi
| (Summing) (Nonlinearity)

U Integrates both linear and nonlinear neuron functionality
O Energy efficiency today: 500fJ/MAC; foreseeable: 1.1 fJ/MAC* ‘Nogaki. K. of al

U Operational speed: GHz Nat. Photonics 13,
454-459 (2019)

Huang, Shastri, Prucnal et al. Nature Electronics 4 (2021) 11



Integrated WDM Silicon Photonic Neural Network Chips

3 mm

We have demonstrated complete system
integration and applications

ATATATATETEY.
TATATATATRTE"

All neuron components are foundry compatible

Utilizes open-source design tools created by
our lab (https://github.com/lightwave-lab)

Optical and electrical packaging are simple and
can be done in-house

Neural networks can be trained via mature
software tools such as TensorFlow

8 mm

Experimentation is fully automated

Huang, Shastri, Prucnal et al. Nature Electronics 4 (2021) 12



Nonlinear Dispersion Compensation

Fiber optic link

Transmitter introduces both linear . _ _ _ _
bitrate is limited and nonlinear dispersion Digital signal processing Nonlinear compensation
bv disbersion (DSP) mitigates linear (NLC) module mitigates
y disp ‘/ 60km PSCF dispersion nonlinear dispersion
H, EDFA __ J2 i
— : N Digital — 0
Ve Transmitter C 1> Cohe?ent RX [ DSP NLC VO/
PM-16QAM 10,080 km x168 16QAM

Uncompensated
input

imaginary part

Hy - 11 3

demodulator

w/o NLC: Q = 9.34 dB

imaginary part

= . / T T T T
. Hk =3 =1 1 3
real part Prlnceton packaged silicon photonic NN real part

O Fully-integrated photonic neural network achieved real-time nonlinearity
compensation using captured long-haul fiber-optic communication data
Q0 Simulated NN improvement: 0.65 dB. Real photonic NN improvement: 0.60 dB

Huang, Shastri, Prucnal et al. Nature Electronics 4 (2021)

NLC w/ PNN: Q = 9.94 dB

Compensated
output

NEC

13



Blind Source Separation (BSS)

BSS: Recovery of unknown signals from arbitrary
mixtures using multiple receivers

O Employs independent component analysis (ICA),
adjusting network weights to maximize kurtosis

O Outputs signals that are maximally non-Gaussian
O Requires as many (or more) receivers as transmitters

O Applications:
U Image denoising, object detection
U RF signal separation, speech isolation

Electronic BSS
RF Filter |»( ADC [+

RF YL RF Filter ->(ADC N

Rx

l|||||l||
DSP Extracted
ICA ICs

RF Filter ->(ADC N

K RF Filter ->(ADC N

RF components are limited in bandwidth, requiring
many different receivers to cover the RF spectrum

BSS using ICA
X1 \.\\
S Q) — E lII||I-Il P > > \\\ :S'\
N\ Y b ot
1 15'IC
nRx = nTx

5?"//; > E I""'Ill' > > [—p ;/////‘3-\2

X2 anlc
Ind dent ICA module
ndepenaent sources (T’9 performs linear . .
are linearly mixed on their demixing Original sources

way to receivers (Rx) are recovered

Y s

Photonic BSS

re Y
Rx E/O . afflee
5 — Fioihle ADC -» Extracted
{ = Neuron
E/O ICs
Y A
2C / Iterative weight control

Linear photonic front-end allows ICA to be performed on the
entire RF spectrum simultaneously (i.e., collective processing)

Overview of BSS see: Choi, A. Cichocki, H. M. Park, and S. Y. Lee,

Neural Inf. Process. Lett. Rev. 6, 1 (2005).

14



RF Blind Source Separation using Photonic Neurons

S1 Original Sources S2

1 L 3 ) | | 1
o | [ | |

Integrated Photonic Neuron

Normalized Intensity
o

—11 A .z ; w. ‘. Al r ‘1';““ — . r y
0 5 10 15 20 0 5 10 15 20
Time (ns) Time (ns)
Received Mixtures
- Rx1 = 0.65%S1 + 0.35X%S2 N Rx2 = 0.35%S1 + 0.65X%S2
% 0 ” \ i L ;‘ Y \ Jid, b ‘ J ’ ,‘H\\ i \“ H \‘L \‘\ H \‘\ | ! 04 ‘H‘ M \ ” “ M ‘“ “ \l“ |j [ ‘“ | ”li Il Il. il
% Mr o Hx My “ “ L / \‘ \‘ M i rh H i H‘H a W M ‘1 T \l‘" ‘l\ ll"i' i -
SRR UAUNE LR S UALN .
0 5 10 15 20 0 5 10 15 20 [
Time (ns) Time (ns)
R Estimated Sources
g 14 T 11 m
g I r “j ‘
E 0 i it 0 -
g 1] | | [ ] (L. “ I 1A iy
= (') é 1'0 1v5 2I0 6 é 1'0 1'5 2'0
Time (ns) Time (ns) . .
o Q Fully-integrated neuron linear front end
g used to demonstrate broadband BSS
£ (ICA) from 1 GHz to 13.8 GHz
3 901 0 Separability of over 85% achieved
7 . across the entire operating bandwidth

2 4 6 8 10 12 14
Carrier Frequency (GHz)

Zhang, Huang, Shastri, Prucnal, et al, arXiv:2104.01164 (2021)



RF Fingerprinting using Neural Networks

RF fingerprinting discriminates between
nominally identical RF transmitters using their
nearly unidentifiable idiosyncrasies

O Exploits minor physical variances from
manufacturing and environmental effects

O Capable of distinguishing nominally “identical”
transmitters (i.e., same make and model)

/e e

N, [ ' A" =\ o \‘/

&7

Network is trained to recognize

Antennas receive
RF waveforms

individual transmitters from a set of

nominally identical transmissions

—> Tx 1 (friend)

WY N\ “ KA/ Q2 :
— O X~ N0~ ;\.:%:0 — Tx 2 (friend)
X KO8N XN
il R e Ne/
\ \
\\ A\ Z

—> Tx 3 (foe)

Access is granted
or denied based on
transmitter identity

Use Case: Identify Friend or Foe

Known, authenticated
transmitter (friend) ~~ o »iccess granted
—y

—

‘\

Access denied S~ o )
Unauthorized _ - )
transmitter (foe) -

”

E -=" RF transceiver with
fingerprinting capability

The photonic neural network
can enable real-time transmitter
identification across 10’s of
GHZ of RF spectrum

16



RF Fingerprinting: All-Electronic vs. Hybrid Approach

Extraction of Physical Characteristics
(Common to both approaches)

Raw waveform

Signal Decoded
and Subtracted

BN |

Peng, Shastri, Prucnal, et al, arXiv:2106.13865 (2021)

Error Signal

All-Electronic Approach (NRL)
Implemented on a conventional PC

: “ﬂ Merchant, Nousain et al., IEEE JSTSP (2018)

<

N
’-l N\ AN
. U AN N

(CNN) Classifier

| m]ﬂ ﬂ% AN
] Convolutional i

M Neural Network

Hybrid Photonic/Electronic Approach (Princeton)

Implemented on a photonic chip plus FPGA

A 4

Identification

Tags

A

i Photonic Recurrent . . i
! Simplified CNN .
i Neural Network (RNN) Classifier i
— (GO ks [ Hx
: - s l
: Transformed :
! error signal :

17



RF Fingerprinting Hybrid Architecture

Broadband
RF input

= mmpom- N Transmitter
Photonic EE=3%Y  IEADCE— > classification

%m» : output

RX Antenna

Photonic RNN at
frontend processes
GHz RF signals in
real time

Reduced CNN is implemented in a small

form-factor FPGA: Xilinx Pynqg-Z1
Performance Summary

Approach Estimated Energy per  Latency (ms) Throughput
classification (uJ) (Classifications/sec)
NRL Convolutional NN implemented on Larger FPGA 6,194 26.2 50
Princeton/Queen’s Hybrid Approach 15.11 0.154 12,190
Improvement factor 410x 169x 244x

O Classifies 30 identical transmitters in real time with over 96% accuracy
O Simultaneous improvement of power, latency, throughput, and SWaP over purely electronic approach

Peng, Shastri, Prucnal, et al, arXiv:2106.13865 (2021) 18



Roadmap: Emerging Ideas and Challenges

CPU Digital Memory Programmable Phase-Change
(volatile, RAM) Analog Memory = \jaterial (PCM)

Cell (non-volatile)

Input/Output Microcontroller
Circuit Options

Modulator

CW laser i
source : "&0(\\0
Photonic Neural O
_ _ Networks
Fiber-optic «0‘\:@(\\6
source Neuromorphic Processor e®

Shastri, Tait, Prucnal et al. Nature Photonics 15 (2021)
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nature

REVIEW ARTICLE | FOCUS photonics

https://doi.org/10.1038/541566-020-00754-y

" ") Check for updates

Photonics for artificial intelligence and
neuromorphic computing

Bhavin J. Shastri©@'%724 Alexander N. Tait ©23’2< T, Ferreira de Lima©2, Wolfram H. P. Pernice ©?,
Harish Bhaskaran©5, C. D. Wright ©¢ and Paul R. Prucnal?

Research in photonic computing has flourished due to the proliferation of optoelectronic components on photonic integration
platforms. Photonic integrated circuits have enabled ultrafast artificial neural networks, providing a framework for a new class
of information processing machines. Algorithms running on such hardware have the potential to address the growing demand
for machine learning and artificial intelligence in areas such as medical diagnosis, telecommunications, and high-performance
and scientific computing. In parallel, the development of neuromorphic electronics has highlighted challenges in that domain,
particularly related to processor latency. Neuromorphic photonics offers sub-nanosecond latencies, providing a complemen-
tary opportunity to extend the domain of artificial intelligence. Here, we review recent advances in integrated photonic neuro-
morphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet
those challenges.

Shastri, Tait, Prucnal et al. Nature Photonics 15 (2021)
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Optics & Computing: A 2022 Perspective

Programmable photonics

e Bogaerts et al.

w7~ » Nature (2020

Parallel processing,
passive waveguides,
matrix multipliers

Silicon Silicon photonics,

Neuromorphic Photonics
Shastri, Nat. Photon. (2021)

Free-space Linear NNs AL

Challenge: Integration, nonlinearity < 3’@ Neuromorphic Electronics
Neﬁmﬂﬂ"c Challenge: bandwidth

VEZ V. 1:20 Paul R. Prucnal ) vys—
LD B A Bhavin J. Shastei S :
% \ =
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] ”
N
! ;

THRESHOLDING,
FEEDBACK,
AND GAIN,

1 million neurons
255 million synapses
5.4 billion transistors

Merolla et al. Science (2014)

FEEDBACK,GAIN, AND THRESHOLDING

Psaltis & Farhat, Opt. Lett. (1985)

Deep learning, spiking, equilibrium propagation
Prucnal & Shastri, Neuromorphic Photonics CRC Press (2017)

| Industry = electronics + photonics
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