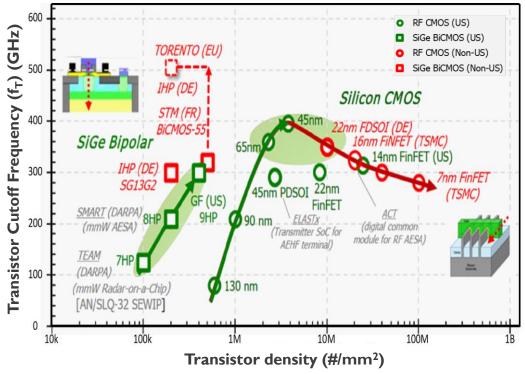
nnec

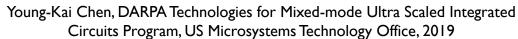
100 GBAUD TRANSCEIVER CIRCUITS FOR OPTICAL INTERCONNECTS

JOHAN BAUWELINCK, XIN YIN, GUY TORFS, PETER OSSIEUR
AND THE IDLAB-DESIGN TEAM

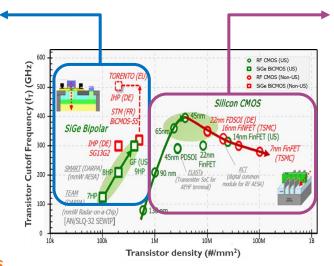
OUTLINE

- CMOS vs. SiGe BiCMOS
- Recent and ongoing work for 112 Gbaud in SiGe BiCMOS
 - Analog interleaver and MUX with integrated FFE
 - Quad MUX with EML driver and clock synthesis
 - Quad MZM driver and TIA
- Recently started in FinFET CMOS
 - Feasibility studies and proof-of-concept designs
 - I12 Gbaud DSP-based CDR and I50 GSa/s DAC
- Closing remarks
 - What comes next?
 - Acknowledgements




CMOS VS. SIGE BICMOS

Transceiver progress comes from technology evolutions and smarter IC design



CMOS VS. SIGE BICMOS

HIGH-SPEED ANALOG / MIXED-SIGNAL DESIGNER'S PERSPECTIVE

SiGe BiCMOS

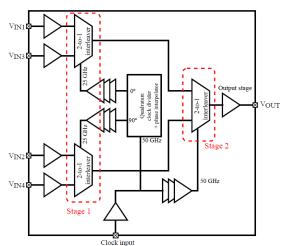
- Higher, still increasing ft/fmax
- Higher break down voltage
- Higher current
- Higher transconductance and intrinsic gain
- Lower noise
- Good metal stacks for high-Q passives and interconnects
- More intuitive/traditional design
- CMOS (55nm, 90nm,...) limits mixed-signal and DSP capabilities

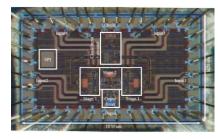
T. Zimmer, et al, "SiGe HBTs and BiCMOS Technology for Present and Future Millimeter-Wave Systems", IEEE Journal of Microwaves, 2021

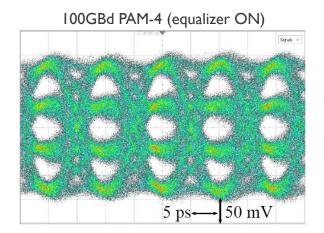
CMOS

- Huge transistor density
- 1000s layout rules, increasing design time
- Sweetspot for analog ~ 28 nm
- Analog performance degrades, low supply voltage
- Higher device variability
- Digital performance increases:
 DSP, calibration & predistortion
- Economics: if it can be done in CMOS, it will be done in CMOS
- Enormous investments on next generation CMOS processes
- High product volume needed

100-120 GBAUD DESIGNS IN SIGE BICMOS

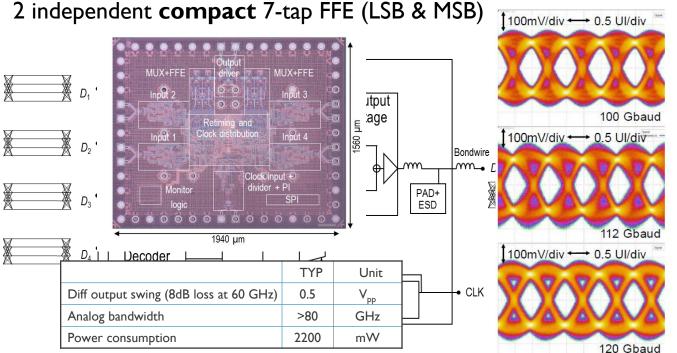

100GBAUD SIGE BICMOS ANALOG INTERLEAVER




OVERCOMES CMOS DAC BANDWIDTH LIMITATION

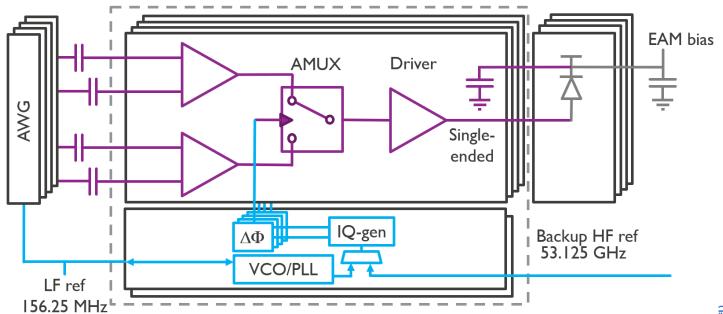
- Functionality: interleave outputs from sub-rate DAC's into broadband analog output
- Novel architecture (patent pending) based on explicit return-to-zero generation
 - Simultaneous programmable **equalization** at high-speed output
 - Lower clock feedthrough

	TYP	UNIT
SAMPLING RATE	100	GS/s
ANALOG BANDWIDTH	73	GHz
POWER CONSUMPTION	700	mW




120GBAUD SIGE BICMOS MUX AND EQUALIZER

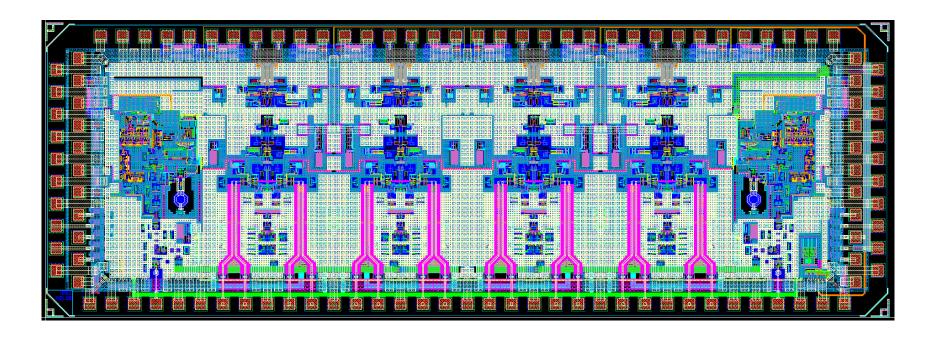
4: I "digital" MUX, input decoders for NRZ and PAM-4



120GBAUD SIGE BICMOS ONGOING DESIGNS

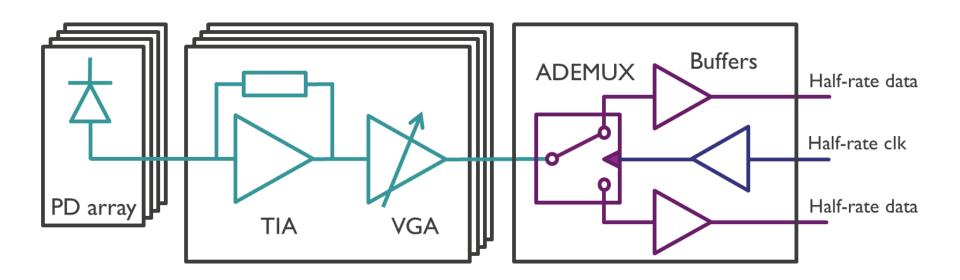
H2020 POETICS

Quad 2:1 linear MUX with integrated EML driver and integrated PLL/VCO



120GBAUD SIGE BICMOS ONGOING DESIGNS

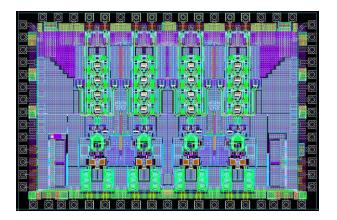
H2020 POETICS

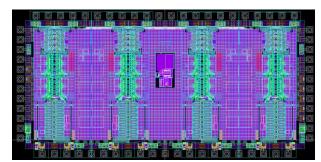


120GBAUD SIGE BICMOS ONGOING DESIGNS

H2020 POETICS

Quad TIA and DEMUX

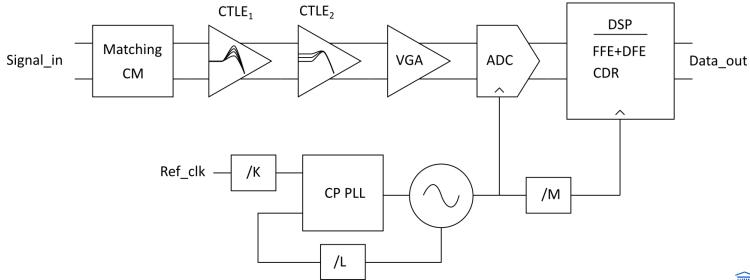



120GBAUD SIGE BICMOS ONGOING FABRICATION

plasmoni ** Nebula

H2020 PLASMONIAC AND H2020 NEBULA

- 4-channel linear Mach-Zehnder modulator driver array
 - 55nm SiGe BiCMOS
 - ~90GHz bandwidth, ~2.0...2.5Vpp differential swing
 - Status: just delivered, assembly ongoing
 - Co-designed with a Silicon Photonic DP-IQ modulator
- 4-channel linear transimpedance amplifier array
 - 55nm SiGe BiCMOS
 - ~50-60GHz bandwidth, low THD
 - OMA sensitivity ~ -6dBm
 - Status: just delivered, assembly ongoing
 - Suitable for single and balanced PDs



ONGOING WORK IN CMOS

112 GBAUD DSP-BASED CDR IN FINFET CMOS

- Low-phase noise clock generated by PLL
- FFE, DFE and CDR function in DSP
- ADC developed by imec Leuven

CLOSING REMARKS AND ACKNOWLEDGEMENTS

WHAT COMES NEXT? WILL 200 GBAUD BE FEASIBLE?

VERY EXCITING DECADE AHEAD

- Technology, circuit design and co-integration will progress in the coming years
 - Several other applications push in same direction: 6G, radar, medical...
 - Novel transistor concepts, integration of high-mobility semiconductor materials
 - Hybrid integration through advanced packaging e.g. transfer printing (H2020 Caladan)
 - Evolution of circuit architecture and design tools
 - New TRx concepts combining electronic and photonic ICs: electro-optical DACs, optical equalization, optical time division multiplexing...
- However, the R&D is a huge challenge
 - An increasing list of issues/risks to be tackled
 - Power consumption is certainly a concern
 - Advanced technology access is restricted
 - IC design cost is really high

WHAT COMES NEXT? WILL 200 GBAUD BE FEASIBLE?

SOME PARTICULAR DESIGN ASPECTS FOR SIGNAL GENERATION

- Clock generation and distribution ~ 30-40 % of the power consumption
 - Lower jitter and phase noise required with increasing baud-rate / constellation e.g. < 100 fs rms
 - Jitter-Power trade-offs in PLLs
 - Multiple sub-rate clocks with precise phase relationship
 - Clock tree to provide high swing clocks wherever needed
- Noise coupling from DSP to VCO or sensitive Rx
- Bandwidth limitations
 - Sinusoidal clocks have limited rise/fall time
 - Loading on current summing nodes
 - ESD protection
 - Simulated waveforms need postprocessing e.g.TDECQ

GRATEFUL ACKNOWLEDGEMENT

TO THE TEAMS AND FUNDING BEHIND THIS WORK

IDLab-Design team members for their great work, creativity and commitment

GRATEFUL ACKNOWLEDGEMENT

TO THE TEAMS AND FUNDING BEHIND THIS WORK

- IDLab-Design team members for their great work, creativity and commitment
- Industrial and academic collaborators
- EU funding H2020 and ESA
- UGent IOF and BOF
- VLAIO FWO
- Imec

mec

embracing a better life

