Model electro-optical integrated circuits using Verilog-A

Dr. Zeqin Lu

R&D Manager – Photonics IC Solutions

Photonics is a Key Enabler of 5G, Data Centers, Al and More

Fiber optic connection with Intel® Silicon Photonics optical transceivers

Dense wavelength division multiplexing (DWDM) fiber optic connections

Source: "Exploring 5G Fronthaul Network Architecture Intelligence Splits & Connectivity" 5G Wireless Communications - Silicon Photonics, Intel

High Performance Computing | Ayar Labs In-Package

https://ayarlabs.com/high-performance-computing/

https://spectrum.ieee.org/techtalk/computing/hardware/building-quantum-computerswith-photons

Image: Xiaogang Qiang/University of Bristol

Y. Shen et al. Deep learning with coherent nanophotonic circuits, Nature Photonics, https://doi.org/10.1038/nphoton.2017.93

MIT and DARPA Pack Lidar Sensor Onto Single Chip https://spectrum.ieee.org/techtalk/semiconductors/optoelectronics/mit-lidar-on-a-chip Image: Christopher V. Poulton

The trends...

- The rising demands for compute power;
- Optical interconnects will continue to replace copper to bring the power consumption down.
- Photonic packaging evolves quickly and moves towards 3DIC
- Challenges:
 - Signal integrity: EIC & PIC should be co-designed to optimize their overall performance
 - Thermal integrity
 - Optical I/O

Ref: "Perspective on the future of silicon photonics and electronics" N. Margalit, et.al., Appl. Phys. Lett. 118, 220501 (2021)

Agenda

- Basic: model optical signal using Verilog-A
- Advanced photonic Verilog-A models
- Create Verilog-A models through automation
- Example: 4-ch DWDM SiP transceiver design
- Key takeaway

Basics of photonic Verilog-A

/Insys

What is Verilog-A model?

- Verilog-A models are analog behavior models that can be solved by SPICE circuit solvers.
- Verilog-A model behavior and ports can be customized by script.
- Compatible with various electrical analyses (dc, ac, tran)

```
module simpleres(a, b);
  inout a, b;
  electrical a, b;
  parameter real r = 1000 from (0:inf);

analog begin
     I(a,b) <+ V(a,b) / r;
  end
endmodule</pre>
```


How to simulate optical signal using Verilog-A?

- Electrical signal includes potential and flow
- Optical signal is complex (Re & Im), frequency-dependent, mode-dependent, and bidirectional.
- Workaround:
 - Optical signal is represented by buses
 - Each port is a structured port
 - Analytically describe input-to-output signal transmission (single directional)

```
include "../../../cad/constants.vams"
'include "../../../cad/disciplines.vams"
module Optical_Waveguide(inLight, outLight);
   inout [0:3] leftLight; // [0:1] is left side input, [2:3] is left side output
   inout [0:3] rightLight; // [0:1] is right side output [2:3] is right side input. optical
   [0:3] rightLight, leftLight;
   // Physical Design Parameters, all units in SI
   parameter real L = 0.0005;
                                       // length
   parameter real ng = 4.1963;
                                      // group index
   parameter real np = 2.1;
                                      // refractive index
   parameter real alphaA = 287.6; // loss
   parameter real G freq = 1.93e14; // reference frequency parameter passed in from
   top level simulation
   // initialize intermediate points
   optical [0:1] rightOutput;
   optical [0:1] leftOutput;
   optical [0:1] transfer, // for calculated phase-shift and amplitude change
   optical [0:1] transferCart; // for above in real and imaginary forms
   pol2cart convs1(transfer, transferCart); // convert waveguide effect to real and
   cartmul mulout1(transferCart, leftLight[0:1], rightOutput); //Calc outputs
   cartmul mulout1B(transferCart, rightLight[2:3], leftOutput);
   analog begin
       //calculate phase-shift and amplitude change in polar coordinates
       E(transfer[0]) <+ (-L*np*2*'M PI*G freq/'P C)%(2*'M PI);
       E(transfer[1]) \le exp(-alphaA*L);
       // Output delayed signals
       E(rightLight[0]) <+ absdelay(E(rightOutput[0]), L*ng/`P C);
       E(rightLight[1]) <+ absdelay(E(rightOutput[1]), L*ng/P C);
       E(leftLight[2]) <+ absdelay(E(leftOutput[0]), L*ng/`P C)
       E(leftLight[3]) <+ absdelay(E(leftOutput[1]), L*ng/P C);
endmodule
```

C. Sorace-Agaskar, et. al.,, "Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA," Opt. Express 23, 27180-27203 (2015)

Photonic SPICE/Verilog-A challenges

Challenge 1

- Male/Female type unidirectional ports are widely used in photonic Verilog-A model, making schematic connection very restricted.
- Ansys' Solution: Bi-directional ports

Challenge 2

- No industry standards for optical port interface!
- Possible solution: IEEE Working Group P3186

Challenge 3

- Creating model requires a lot of model expertise
- Maintaining/updating complex models with hundreds/thousands lines of code is time-consuming.
- Ansys' solution: Automated model compiler!

Advanced photonic Verilog-A models

Ansys

Mode library overview

• Waveguides: Fixed and parameterized waveguides

• Couplers: Fixed and parameterized couplers based on S-parameters, grating and directional couplers

• Actives: Electrical/thermal phase shifters, ring modulators, Mach-Zehnder modulators, EAMs and photodetectors

Ring modulator

Model source data:

- Ring radius
- Coupler data
- Waveguide neff, ng, loss
- Thermal tuner data
- Carrier-depletion/injection tuner data
- Electrical RC parameters
- etc...

All-pass ring modulator

Add-drop ring modulator

Frequency sweep

Compile

Time-domain modulation

Photodetector

Model source data:

- Frequency-dependent responsivity
- Voltage-dependent dark current
- Voltage-dependent net bandwidth
- Electrical RC parameters
- Enable/disable shot noise
- etc...

Transient response (1-ch input)

@1550 nm, 1mW

Channel crosstalk

- @1550 nm, 1mW
- @1550.8 nm, 1mW

S-parameter elements

- Model source data:
 - Lumerical S-parameter data file

Compile

Touchstone S-parameter data file

How to create models through automation?

/Insys

Compact model library (CML) compiler

Automates generation of photonic compact model libraries (CMLs)

Component data collection Compact Model Generation Circuit/System Design CML Compiler Measurement data Build Install Build Run Deploy **Photonic Verilog-A models** Lumfoundry Tests Library Element Status Center O X + Schematic symbols Compact Library master file /home/developer/Desktop/temp/my models/library.json ▼ Reload models Select Photonic Model Add Ring_Mod_C_band ring_modulator electro_absorption_modulator Delete photodetector simple Simulation data Rename layer group gopdk Si3N4 (Silicon Nit Clear gondk Cu (Conner) - CRI gopdk TiN - Palik geometry
CHARGE_simulation_region
CHARGE boundary conditions
C_2D
layer group objects

Let's see an example

Ansys

Example – 4-channel DWDM Transceiver Design

Silicon photonic (SiP), ring-based, 4-channel DWDM transceiver design

• Channels: 1551.72nm, 1552.52nm, 1553.33nm, 1554.13nm

• **Data rate**: 25Gbps x 4 = 100 Gbps

Schematic design & simulation

Conclusion

- We presented the use of standard Verilog-A language for modeling advanced photonic components in PIC analysis, where complex, bidirectional, multimodal, and multiwavelength optical signal are fully supported.
- Photonic Verilog-A models are compatible with commercial SPICE solvers, making them ideal for EIC and PIC co-design and co-optimization.
- Ansys' CML Compiler can help creating Photonic Verilog-A models in automated approach.
- Model vendors and EDA vendors need to work together to create IEEE standards for optical port interface!

Ansys

